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PREFACE.

“As different as East from West” is a proverb. Quite
apart from differences of custom, the contrast in the develop-
ment of Science between the Orient and the Occident might
well be considered as a measure of their diversity. The
inertia and sterility in scientific production which characterize
India and China is nowhere more marked than in the Science
of Mechanics.

On the other hand, the ever active, ever achieving minds of
the West, with persistent patience, seem at times almost on the
verge of solving the cryptogram of nature and of discovering
an ‘““Open Sesame’’ far more potent than that of the Arabian
N:ghts.

Certainly the achievements of the enslaved genii summoned
by Alladin’s Lamp, compare but poorly with the marvels
wrought by the captive forces of nature controlled by our
modern mechanism. While this development has been mighty,
it has been slow, and it has been achieved only by hard-
thinking, patient labor and experiment.

From many sources, ancient manuscripts, books, papers and
letters hidden away in various libraries, the development
of the fundamental principles of Mechanics may be pieced
together. Much of the following short account is the result
of research in this country and abroad in connection with
studies for the Doctorate in Science of New York University.

With some emendation and alteration it is now offered
with the hope that it may interest engineers, instructors and
students. It should make clearer the nature of the Science
of Mechanics and its evolution, give some idea of the power
of mathematical analysis and make evident the dependence
of the ‘“‘practical man” upon the silent meditations of men of
science.

D. H. R.

NEew YORk, 1910.
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INTRODUCTORY CHAPTER.

NATURAL SCIENCE.

The word mechanics, though it indicated of old the study
of machines, has long since outgrown this limited meaning
and now embraces the entire study of moving bodies, both
large and small, suns and satellites, as well as atoms and mole-
cules. The phenomena of nature present to us a world of
change through ceaseless motion. Mechanics is the ‘‘Science
of Motion" as the physicist Kirchhoff has defined it, and has
all natural phenomena for its field of investigation. Why
things happen and how they happen are the questions that
here present themselves.

It was a long time before the distinction between “why"’
and “how’” was drawn, but when once the question ‘“‘why’’
was turned over to the metaphysician and the theologian,
and attention was concentrated on ‘“how,” then mechanics
made progress. Men then began to discover ‘“how things
go,” and to try their hand at invention.

It is not the purpose here to touch upon either the meta-
physical or the psychological aspect of phenomena, nor the
mystery of vegetable or animal activities, but to trace the
development of Mechanics as a science from the earliest records
to the present time, first analyzing the contributions made to
it, step by step, and then touching upon their use and value.

As the French philosopher Comte first noted, three stages
are apparent in the growth of human knowledge. In the
first stage, man ascribed every act to the direct interposition
of the Deity, in the second he tried to analyze the Deity’s
motives and so tried to learn ‘“‘why,” while in the third, men
came to regard the inquiry “why’’ as profitless and ask ‘‘how.”
In this last stage, they accept the universe and are content
with learning all they can of how it goes. With this last
attitude, called positivism, science flourishes. Out of it grew
the notion of utilitarianism,—the devotion of all energies

I I



2 THE SCIENCE OF MECHANICS.

toward the improvement of the conditions of life on earth.
Though this later philosophy cannot entirely justify itself,
it is commonly identified with the scientific attitude of mind.

By the long road of experience, by blunder, trial and experi-
ment, men first gathered, it seems, ideas of things that appear
always to happen together as by a necessary sequence of
“cause and effect.”” Of the stream of appearances continu-
ously presenting themselves, some are invariably bound to-
gether, being either simultaneous or successive, the presence
or absence of the others apparently making no difference.
Those having no influence may reasonably be ignored and
eliminated as of no consequence. In this way, the method
of abstracting from the great multitude of phenomena those
that are mutually dependent seems to have been evolved.

Barbarous peoples do not possess a clear notion of sequence
or of the interdependence of things. They are prone to regard
the consequence of an action as accessory, as something done
by an invisible being or a god. An action is performed by
them, and what is commonly called by us the result is con-
ceived by them as the simultaneous act of their god. Their
medicineman is thought of, as one proficient in the art of
appealing to the moods and whims of their gods propitiously.
Even the Greeks and Romans, the founders of our European
civilization, were accustomed to be guided in affairs of state
and of the home by omens, by the flight of birds, and the
inspection of the entrails of animals,—most naive examples
of traditional error in the interdependence of simultaneous
phenomena.

Things which we now understand to have not the slightest
relation with each other were systematically confounded by
the ancients. For thousands of years belief in astrology was
general in Europe and the universality of the belief is at-
tested by such words as ill-starred, disastrous, consider and
saturnine, all of which are manifestly of astrological ety-
mology. It was only very slowly and gradually, step by step,
that men came to think of phenomena quantitatively rather
than qualitatively, and to arrive at a more rational concep-
tion of nature through experience and reflection.




NATURAL SCIENCE. 3

As the interrelation of things came to be more clearly per-
ceived, people began to say they could ‘‘explain things,”
meaning that they had arrived at a familiarity with, and had
begun to recognize certain permanent elements and sequences
in the variety of phenomena. By joining these elements, they
constructed a chain and attained to a more or less extensive
and consistent comprehension of the relations of phenomena
by a co-ordination of their permanent elements.

If these elements are linked together logically, the satis-
factoriness of ‘‘the explanation’ depends upon the length of
the chain. The longer the chain, the further it reaches, and
the more satisfied one is, the more one ‘‘understands’ the
matter. Thisis the general method of ‘‘learning things,” and
the information so collected may be called, as Prof. Karl
Pearson has called it, an ‘‘intellectual résumé of experience.”
But it should be noted that it is rarely the simple correlation of
things that will stand the test of experiment.

There is in this method abundant chance to go wrong. Itis
difficult, and especially troublesome for a beginner, untrained
in this process, to decide what things really do not have effect
and hence may be excluded from consideration. And if it is
difficult for the beginner in science to-day, surely it was im-
mensely more so for primitive men. Students are wont to
complain of the artificiality of geometry and mechanics. Fac-
tors which they feel do make a difference in reality do not
seem to them to be fully allowed for, or they are troubled by a
feeling of uncertainty as to the equity of the allowance. The
peculiar value of mathematical studies lies just here in the
rigorous training in reasoning. Whatever a student’s success
with his mathematics, few make its acquaintance without
receiving wholesome lessons of patient application of the in-
tellectual method by which mankind has won its mastery
over natural forces.

We may quote here to advantage Prof. Faraday.! ‘‘There
are multitudes who think themselves competent to decide,
after the most cursory observation, upon the cause of this or

1 Lecture delivered before Royal Institution of Great Britain,—*On Edu-
cation of the Judgment.”



-4 THE SCIENCE OF MECHANICS.

that event, (and they may be really very acute and correct
in things familiar to them):—a not unusual phrase with them
is, that ‘it stands to reason,’ that the effect they expect should
result from the cause they assign to it, and yet it is very dif-
ficult, in numerous cases that appear plain, to show this reason,
or to deduce the true and only rational relation, of cause and
effect.

“If we are subject to mistake in the interpretation of our
mere sense impressions, we are much more liable to error
when we proceed to deduce from these impressions (as sup-
plied to us by our ordinary experience), the relation of cause
and effect; and the accuracy of our judgment, consequently,
is more endangered. Then our dependence should be upon
carefully observed facts, and the laws of nature; and I shall
proceed to a further illustration of the mental deficiency I
speak of, by a brief reference to one of these.

“The laws of nature, as we understand them, are the founda-
tion of our knowledge in natural things. So much as we
know of them has been developed by the successive energies
of the highest intellects, exerted through many ages. After
- a most rigid and scrutinizing examination upon principle and
trial, a definite expression has been given to them; they have
become, as it were, our belief or trust. From day to day we
still examine and test our expression of them. We have no
interest in their retention if erroneous; on the contrary, the
greatest discovery a man could make would be to prove that
one of these accepted laws was erroneous, and his greatest
honour would be the discovery. . . .

“These laws are numerous, and are more or less compre-
hensive. They are also precise; for a law may present an
apparent exception, and yet not be less a law to us, when
the exception is included in the expression. Thus, that eleva-
tion of temperature expands all bodies is a well-defined law,
though there be an exception in water for a limited tempera-
ture; we are careful, whilst stating the law to state the excep-
tion and its limits. Pre-eminent among these laws, because
of its simplicity, its universality, and its undeviating truth,
stands that enunciated by Newton (commonly called the law
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of gravitation), that matter attracts matter with a force in-
versely as the square of the distance. Newton showed that,
by this law, the general condition of things on the surface of
the earth is governed; and the globe itself, with all upon it
kept together as a whole. He demonstrated that the motions
of the planets round the sun, and of the satellites about the
planets, were subject to it. During and since his time, certain
variations in the movements of the planets, which were called
irregularities, and might, for aught that was then known, be
due to some cause other than the attraction of gravitation,
were found to be its necessary consequences. By the close
and scrutinizing attention of minds the most persevering and
careful, it was ascertained that even the distant stars were
subject to this law; and, at last, to place as it were the seal
of assurance to its never-failing truth, it became, in the minds
of Leverrier and Adams (1845), the foreteller and the dis-
coverer of an orb rolling in the depths of space, so large as
to equal nearly sixty earths, yet so far away as to be invisible
to the unassisted eye. What truth, beneath that of revelation,
can have an assurance stronger than this!”

Such is the process of scientific induction. It was by linking
ideas together in an orderly way, by forming and verifying
hypotheses, that men finally came to the ‘‘principles,” and
‘formulee,” which embody these general *‘truths” or “laws of
nature.” In this way knowledge has been built up, chain by
chain, into a more or less complete system of the relations of
things. Without asking the “why’ of it all one can see
“how” it goes together by running along the chains from link
to link. In a word this knowledge is relative, and therefore
quantitative, and that is why numbers and mathematics play
so large a part in the exact sciences, and in mechanics.

The guiding principle in all this is the belief in the con-
stancy of the order of nature founded on the experience of
the human race. On this belief are based all scientific calcu-
lations and deductions. This is sometimes formulated as a
“Law of Causality,” affirming that every effect has a sufficient
cause and that the relation of cause and effect is one of in-
variable sequence, if not interfered with by conditions or
circumstances that make the cases dissimilar.
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Information thus systematized, verified and formulated into
truths or general principles is called Natural Philosophy or
Natural Science. The Science of Mechanics is the oldest and
one of the most important divisions of Natural Philosophy.
This knowledge of the interdependence and inter-relation of
phenomena makes it possible to ‘predict’ and “‘control” them,
and keeps us from making hasty and erroneous inferences.
When developed with this view, applied science or applied
mechanics is the usual designation, and that such information
is power to one who has the skill to apply it, need not be dwelt
upon. As Herbert Spencer says in his volume on Education:!
“On the application of rational mechanics depends the success
of nearly all modern manufacture. The properties of the
lever, the wheel and axle, etc., are involved in every machine
—every machine is a solidified mechanical theorem; and to
machinery in these times we owe nearly all production.”
Elsewhere he says: ‘‘All Science is prevision; and all prevision
ultimately helps us in greater or less degree to achieve the
good and to avoid the bad.””?

It is not the intention here to discuss or even to enumerate
the triumphs in the practical applications of mechanics. The
utilization of power, of the strength of animals, the power
of the wind, of waterfalls, of steam and of electromagnetic
attraction, constitutes the art of machine contrivance
rather than the science of mechanics. Progress in theoretical
mechanics has always brought in its train an advance in
machinery.

The innumerable engines for enlightenment and destruction,
the cylinder-printing-press and the machine-gun which have
changed and are altering the economic, social and religious
prospect of nations and tribes are the direct result of the
application of the principles of the science of mechanics. With
further advance in theory and systematic experimentation even
more revolutionizing contrivances will inevitably follow.
When invention has realized the theoretical surmise that the
‘“molecular energy’’ in a cup of tea is sufficient to tumble down

1P, 30.
*“First Principles,” p. 15.
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a town, we may expect an Age of Power ushering in wonders
untold.!

With the philosophy that denies the existence of realities
outside of the mind we shall not trouble ourselves here.
Mechanics regards a ‘“‘truth” or a ‘“law’ not as subjective but
as objective, holding that an external world exists and that
truth is a relation of conformity between the mental world
of perceptions and inferences, and really existing objects and
their relations. Unless this and the validity of the principle
of logical inference be conceded, our science is futile. The
mental processes by which the victories of Science are won are
in no wise different from those used by all in daily affairs. As
Huxley says: ‘‘Science is nothing but organized common sense.
The man of Science simply uses with scrupulous exactness
the methods which we all habitually and at every moment,
use carelessly. Nor does that process of induction and de-
duction by which a lady, finding a stain of a peculiar kind
on her dress, concludes that somebody has upset the inkstand
thereon, differ in any way, in kind from that by which Adams
and Leverrier discovered a new planet.”

Nevertheless there will always remain certain ultimate truths
which cannot be proved and which must be consideredas axiom-
aticand intuitive. This should not invalidate our conclusions
and we will not enter upon a discussion of these questions here.

The science of mechanics has then, for its subject matter,
the motion-phenomena of the universe. Its growth is co-
extensive with that of the race, and one of its functions is the
widening of its perceptions. It is obviously a subject of
primary importance, for from apparent chaos, it evolves rules
and principles of practical utility, and so increases knowledge
and efficiency, and consequently happiness, through power
and dominion over nature.

1Suppose that a cup of tea (about 100 cubic centimeters) could be
suddenly and completely dissociated, after the manner of the radio-active
emissions of radium, into a cloud of particles with a velocity similar to
radium emanations of say 100,000 kilometers a second (about one-third
the velocity of light), then a simple calculation by the theoretical formula
for energy, l4mw?, gives 14X.1/9.8X 100,000,000*=50,000,000,000,000
kilogramme-meters, equal to the energy of explosion of about 500,000 tons
of rifle powder, or enough energy to drive an express train around the globe
a hundred times.



PART I.
1. THE SCIENCE OF MECHANICS.

The most common of all our experiences is the motion of
solid bodies. No idea is more frequently with us than the
idea of such movements. It seems to be the first experience
of the dawning intellect and it is soon fully developed by
boyhood’s games of marbles and tops. Indeed, there is
nothing that our imagination pictures with greater ease and
readiness, than a moving speck or particle. There is there-
fore considerable satisfaction, and an appealing reasonableness
and inevitableness in the idea of classifying phenomena on
the basis of this familiar experience.

This idea and another, quite as familiar, namely, that com-
mon objects can be crushed and broken into many small par-
ticles and ground to dust so small as to seem indivisible, are
fundamental, and upon them the science of mechanics, as a
scheme of motions and equilibrium of particles has been built
up. Masses either change their relative position or they do
not. How they move, rather than why they move, is the
question of Mechanics. It is especially the circumstances of
motion or of rest that are the subject of investigation of the
science.

In its formal presentation in textbooks, Mechanics is now
defined by an American Professor, Wright, as ‘“‘the science
of matter, motion, and force’’; by an English Professor, Ran-
kine, as the “‘science of rest, motion and force’; by a German
Professor, Mach, as that branch of Science which is ‘‘concerned
with the motions and equilibrium of masses.” These defini-
tions do not differ essentially.

The questions at once present themselves what is force,
what is matter, what is mass? Etymology does not help us.
The further back one goes, the more indistinctive and general
is the idea corresponding to a scientific term. The terms,
matter, mass, force and weight lose precision as we trace them

8




THE SCIENCE OF MECHANICS. 9

back. Matter leads us back to the Latin, materia, 1. e.,
substance for construction or building. Mass appears to be
derived from the Greek root (Mdsoew), to knead. So by
derivation, matter means the substance or pith of a body,
and mass means anything kneaded together like a lump of
dough. The fundamental idea of mass is then an agglutinated
lump. Weight is of Saxon derivation from a root meaning to
bear, to carry, to lift. Force appears to come from the Latin
root, fortia, meaning muscular vigor and strength for violence.
It is an anthropomorphic concept, and is suggestive of myth-
ology in its application to inanimate things.

All these terms are derived from words expressing distinct
muscular sensations. Here in the last analysis we come back
to sense-impressions. A mass is an agglutinated lump as of
kneaded dough, weight is resistance to lifting, and force is some-
thing that produces results analogous to those produced by
muscular exertion. We cannot analyze these simple, immediate
perceptions, nor can we analyze motion. Motion is a sense of
free, unrestricted muscular action. Muscular action impeded
gives us our sense of force. Perhaps our primitive perception
of force was muscular action under restraint or not accom-
panied by motion. From these sense-impressions we attain,
by inference, the idea of space, 1. e., room to move in, and the
notion of time or uniformity of sequence. Mechanics might
then be crudely defined as a scheme of the relations of lumps
of matter acted upon by muscular exertion or by anything
that produces like effects.

Observe that we are conscious of these sense-impressions,
comparatively only. We are aware of them only through
change in their intensity. Here in our endeavors to com-
prehend and to define the ultimate elements of mechanics we
have borne in upon us the relativity of knowledge. The con-
viction that the human intelligence is incapable of absolute
knowledge is the one idea upon which philosophers, scientists,
and theologians are in accord. It is a characteristic of con-
sciousness that it is only possible in the form of a relation.

“Thinking is relationing and no thought can express more
than relations,” says Herbert Spencer in his Chapter on the
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Relativity of Knowledge. And he concludes: ‘“Deep down in
the very nature of Life, the relativity of our knowledge is dis-
cernible. The analysis of vital actions in general, leads not
only to the conclusion that things in themselves cannot be
known to us, but also to the conclusion that knowledge of
them, were it possible, would be useless.’"

But though we are limited in this way we have a large field
in the building of a scheme of inter-relations of the relations
which comprise our conscious perceptions. This is the purpose
of our science of mechanics. In general it endeavors to inter-
pret for us the complex relativity of phenomena in terms of
the most common and simplest of our experiences, namely
the relativity of motion of a particle and the relativity of
the divided parts of bodies.

As science progresses the ideas, mental pictures, and terms
found serviceable in the earlier stages are bound to prove
inadequate later. The process of reorganizing these ideas,
and perfecting terminology is slow, but in it there is unmistak-
able évolutionary progress.

As the philologist Nietzsche says, ‘Wherever primitive man
put up a word, he believed he had made a discovery. How
utterly mistaken he really was! He had touched a problem,
and while supposing he had solved it, he had created an
obstacle to its solution. Now, with every new knowledge, we
\stumble over flint-like petrified words.”"?

The prehistoric races probably explained phenomena by
associating with everything that produces motion, some in-
visible god whose muscular strength was the force of wind,
wave or waterfall. We find in all languages, survivals of this
in the genders ascribed to things inanimate. Indeed, one can
dig out of philology and mythology a petrified primitive natu-
ral philosophy.

To-day we sometimes hear that all phenomena of the material
world are explainable, in terms of matter, motion, and force,
or by the whirl of molecules. One may endeavor to make
this a truism by defining matter as anything that occupies

1Spencer, “First Principles,” Chapter IV.
sNietzsche, ‘‘Morgenréte,” vol. 1, 47.




THE SCIENCE OF MECHANICS. II
space, and by defining force as any agent which changes the
relative condition as to rest or motion between two bodies,
or which tends to change any physical relation between them,
whether mechanical, thermal, chemical, electrical, magnetic,
or of any other kind. But here one does not say what force
is, nor what matter is. The chain hangs in the air; it does
not begin or end anywhere, but the relation of the links is
apparent and serviceable. Indeed, the idea of force is still
fundamentally the same, it is still an agent, as was the ancient
nature-god, though much less definite, nor does it help matters
to subdivide force and mass.

The idea of force as a latent unknown cause is a historical
survival of our primitive conceptions and undergoes trans-
formation with the idea of force as a ‘‘circumstance of motion,"”’
which was developed about the year 1700. It is now held
by some that force is a purely subjective conception. For
example, Tait says in his “Newton’s Laws of Motion": ‘“We
have absolutely no reason for looking upon force as a term
for anything objective; we can, if we choose, entirely dispense
with the use of it. But we continue to employ it; partly
because of its undoubted convenience, mainly because it is
essentially involved in the terminology of Newton's Laws of
Motion, which still form the simplest foundation of our subject.
It must be remembered that even in strict science we use such
obvious anthropomorphisms as the ‘sun rises,’ ‘the wind blows,’_
etc.”

Yet though there may be no such reality as force, mechanics
will probably long continue to be known as the dictionary
defines it, as ‘‘the science which treats of the action of forces
on bodies, whether solid, liquid or gaseous.” We do not
disparage the use of the idea and term force; we shall have
occasion to use them often. But it should be noted that an
evolution in terminology is involved in the evolution of
science.

Such changes in conception and in terminology are inevi-
table. They are essential characteristics of progressive science
which seeks continually to improve the definiteness of relation
between phenomena by making clearer vague connections, or
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by discovering new relations. The relations formerly classed
as acoustic, luminous, thermal, electric, magnetic and chem-
ical expressing certain constant connections of antecedents
and consequents are now generally expressible with exactness
in the terms of the science of mechanics which is built on the
familiar notions of motion and divisibility.

As a matter of convenience, the science has come to be
divided into Phoronomics or Kinematics, the study of pure
motion without reference to the nature of the body moved,
or how the motion is produced, and Dynamics, the ‘‘science
of force,” ‘“‘the study of the push or pull of bodies,” or ‘“the
science of the properties of matter in motion.” It is evident
that in some cases the ‘“forces balance,” giving the condition
of rest; this branch of the study is called Statics. The study
of unbalanced forces producing motions of various kinds is
called Kinematics. These divisions afe purely arbitrary and
were made late in the development of the subject. His-
torically, the study of Statics, or of bodies relatively at rest,
was the first to be undertaken for obvious reasons.

2. THE SCIENCE OF MECHANICS IN ANTIQUITY.

It is the verdict of conservative geologists and physicists
that the earth’s crust is at least 25,000,000 years old, that
period of time being required for the deposit of the depth of
about 50,000 feet! of sedimentary rocks that research discloses;
and it is the opinion of conservative authorities that rude com-
munities of men were dwelling in the broad alluvial valleys
of the Nile, Euphrates, Ganges, Hoang-Ho, (perhaps also on
the ancient Thames-Rhine system), as early as 25,000 years
ago. The subsidence of these broad rivers into narrower
channels left exposed fertile plaine in their old bottoms and
islands in the estuaries, which favored the development of
progressive communities. '

This was particularly true of the Euphrates valley and along
the Nile, where the wild wheat and barley offered food and
made life a less severe struggle for existence. Here perhaps
the first rude camps and villages were developed. But even

1130,000 feet is the average figure suggested by Dr. E. Haeckel—p. 9
“Evolution of Man,” Vol. 2.
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these early communities were probably in possession of rude
tools and weapons. Darwin! cites instances of tools used by
animals and we must imagine that even the very earliest com-
munities of men were acquainted with such crude mechanical
appliances as the lever and cord.

The researches of geologists and archaologists present in-
numerable stone wedges, flint axes, bone and horn implements,
and primitive tools found in graves of the stone age, or on the
site of ancient cave and lake dwellings, indicating extensive
mechanical experience in prehistoric times.? An instinctive
familiarity through long experience, with some of the com-
mon natural processes, and a knowledge of crude cutting and
grinding tools must then be accepted as very ancient, at least
twelve or fifteen thousand years old.

This must be distinguished, however, from a mechanical
theory of science, which is the product of reflection. The
latter was a very slow and gradual evolution. From a
long experience of measuring and bartering, a knowledge
of numbers probably arose, and then a more definite knowl-
edge of the simple mechanical devices was developed. From
these, by reflection and generalization, rules and principles were
evolved. In the ancient Sanskrit language the word from
which “man’’ comes, appears to mean to estimate, to measure.
Man first became conscious of himself, it appears, therefore, as
the being who measures and weighs, compares and reflects.

Wedges, pulleys, windlasses, oars and the lever in various
forms were used before any rule for them was conceived of;
and then the rules for centuries remained but disjointed
unrelated statements of experience. Only very, very slowly
were they mastered and made into a body of mechanical
knowledge. As this process proceeded, the fetishism and
mythology invented to explain natural phenomena declined
before a more rational and logical group of mechanical prin-
ciples. But traces of it long survived. For example, the
idea that “nature abhors a vacuum" is a late survival of such

'The Descent of Man, Chapter III, “Tools and Weapons used by
Animals.”

tPrehistoric Times, Sir J. Lubbock; Ancient Stone Implements, Evans;
Man and the Glacial Period, D. F. Wright; Man's Place in Nature, T. H.
Huxley; Origin of Species, etc., C. Darwin.
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fanciful conceptions, and was cited as late as 1600 A.D. But
for Science, as Spencer says, we should be still worshipping
fetishes; or with hecatombs of victims be propitiating dia-
bolical deities.

It seems that it was only among the people of the Eastern
Mediterranean coast that a true science of mechanics was
developed. There is no evidence to show that among any
of the peoples of the Far East any true science of mechanics
was even begun. Indeed some of the people of the yellow
and darker races still live in the stone or bronze age. Cer-
tainly the whole development of the science as we have it is
European. Of the world’s population of 1,500,000,000, the
200,000,000 of Europe and the 100,000,000 of America who
have a grasp on mechanical science are in control. Half of
Asia’s 700,000,000 are held subject by Europe’s Science, and
the destiny of the other half is the topic of the hour.

To the Babylonians and Phcenicians, skilled in measuring,
in plane surveying, in keeping accounts, and in seafaring,
the science of Europe is traced back. Centuries before the
era of Greece, the Pheenicians had developed a crude astron-
omy and were practicing and slowly improving the common
mechanic arts and trades. They are not to be credited with
originating them however, for scholars have traced these people
back to a mingling of tribes of primitive Semetic and Aryan
stock which took place in the Tigris-Euphrates region of Asia,
about 8coo-10000 B.C.

Here a remarkable civilization of teeming cities had devel-
oped by 5000 B.C. The trials and troubles, the institutions,
arts, literature, and the wail of the prophets, the complete
life history of growth and decay of these cities may be read
in the cuneiform inscriptions on the clay tablets in the British
Museum. With the shifting of the trade routes to the north
and west, through the Dardanelles, their prosperity declined
and they passed out of existence.

Perhaps the oldest relic of their mechanical arts is the
splendid tablet or ‘“‘stele” set up in the temple of Lagash by
Eannatum (c. 4200 B.C.). One side shows the king in his
chariot leading his army to victory, the other shows the wreck
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and ruin of the vanquished whose mangled corpses are left
to the vultures. The great king of these people, Sargon I
(c. 3800 B.C.), is said to have extended his conquests west-
ward as far as the Island of Cyprus, the land of copper.
Bartering expeditions then as now spread information and
developed the arts and trades. As early as 3000 B.C. the
Egyptians seem to have become a power.

It seems, then, that the European development of mechanics
as a science is founded on at least 3,000 or 4,000 years! develop-
ment of the recognized mechanic arts and trades,? and it is
probable that it began with the systematizing of craft experi-
ence and the formulation of this experience in connection with
the instruction of apprentices.

Reflection on methods, and endeavors to train novices by
the experience and mistakes of older craftsmen, formed a sort
of groundwork of experience, and tended to develop a nomen-

1The Egyptian pyramid of Cochrome is referred by archzologists to
the first dynasty of Manetho, 3600 B.C., making it fifty-five centuries
old. It exhibits well developed skill in the trades, ‘“dating from a time
nearly coincident, according to Biblical authority, with the creation of the
world itself (3761 B.C.)"’—Reber, History of Ancient Art, p. 3. See also,
Petrie; Maspero; Perrot and Chipiez.

*The Egyptians’ sculptured wall reliefs and wall paintings exhibit con-
siderable specialization in the trades several thousand years B.C. As for
the Greeks, the picture of Vulcan’s smithy in Iliad XVIII is that of a
most busineslike and efficient shop. There is no mention of iron or steel,
but it indicates the tools employed 1000 B.C.

So speaking he withdrew, and went where they lay 589
The bellows, turned them toward the fire, and bade

The work begin. From twenty bellows came

Their breath into the furnaces,—a blast

Varied in strength as need might be; . . .

And as the work required. Upon the fire

He laid impenetrable brass, and #in 595
And precious gold and silver; and on its block

Placed the huge anvil and took the ponderous sledge

And held the pincers in the other hand.

When the great artist Vulcan saw his task 757
Complete, he lifted all that armor up
And laid it at the feet of her who bore
Achilles. Like a falcon in her flight,
Down plunging from Olympus capped with snow,
She bore the shining armor Vulcan gave.
William Cullen Bryant's Translation.
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clature, and a set of rules. This indicatesin its very genesis
the practical and economical character of mechanical science.
It generalizes experience. It is not only a mental labor-sav-
ing device, but also a guide to the fashioning of physical
labor-saving apparatus.

Mechanics began, then, with the theory and rules of the
trades. The very common origin of its twin-brother geometry,
is seen on translating this Greek word into English : I'ewuerpla,
1,—the science of measuring the earth.! Herodotus attributes
the origin of this’science to the necessity of resurveying the
Egyptian fields after each inundation of the Nile and refers
to the system of taxation of Rameses II (c. 1340-1273 B.C.),
. which required such survey. Early geometry was therefore a
crude theory of land surveying. Its abstractions and rules
were brought to bear upon mechanical problems and there
followed that intimate connection in the development of these
sciences which has been so useful. Formal mechanics has in-
deed been called by one of the masters,? a geometry of four
dimensions, 4. e., the three spatial dimensions and time.

The Ahmes papyrus of the British Museum, ‘‘Directions for
Obtaining Knowledge of all Dark Things” (about 2000 B.C.),
is perhaps the oldest treatise on arithmetic in existence.
The Egyptians appear to have had manuscripts on arithmetic
as early as 2500 B.C. But what every school boy is now
taught was then a dark mystery known to but a few priests
and scribes. The hieroglyphic numerals are a vertical line
for 1, a kind of horse shoe for 10, a spiral for 100, a pointing
finger for 10,000, a frog for 100,000 and the figure of a man
in the attitude of wonder for 1,000,000; a rather hopeless
notation for mechanical calculations from the modern point
of view. '

Building on the accumulations of Egyptian and Pheenician
civilization, the Greeks began the Science of Mechanics by
applying in the trades the rules of geometry and the inductive
. and deductive methods of thought. They labored under the

1 Pickering’s Greek Lexicon; Aristoph. Nub. 202; Th. véa and uérpor; also
Herodt.
tJoseph Louis Lagrange (1736~1813).
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erroneous conceptions of nature taught in their mythological
religion, and they were further handicapped by the notion
that it was not necessary to investigate nature at first hand,
but that the scheme of things could be evolved by ratiocina-
tion. :

Mechanics as a science may be said to begin with the Greeks,
as they formulated the first principle of mechanics. But their
speculations were limited to problems of equilibrium, that is,
to Statics. They never evolved any rational theory of moving
bodies. Dynamics was unknown to them and did not take
form as a branch of mechanics until about 1600 A.D. The
great bulk of the correct theory of mechanics known in an-
tiquity is commonly attributed to Archimedes. Before con-
sidering his work, it will be profitable to glance at the work
of several of his predecessors.

Thales, probably of Greek and Phcenician ancestry, tradi-
tion declares, brought the art of geometry from Egypt into
Greece about 600 B.C. He taught half a dozen theorems by
the inductive method. Proclus a Greek teacher of about 450
A.D., speaks of him as the father of geometry in Greece, and
declares that he learned it in Egypt.

His method was later extended by Pythagoras who, about
500 B.C., prepared two books of geometry on the deductive
plan. He appears to have been the first to separate clearly
the studies of geometry and of numbers. By pointing out
that quantity is incommensurable, but that measure of quan-
tity or a unit may be enumerated or counted, he drew the
distinction between geometry and arithmetic, and set apart
the study of numbers or arithmetic as a branch of mathematics.

One finds it difficult to realize the mysticism and magic with
which so commonplace an idea as a number was then mingled.
Pythagoras regarded numbers as having celestial natures, the
even numbers as feminine and the odd as masculine!*

Hippocrates (420 B.C.) invented the method of reducing
one theorem to another for proof instead of going back to
the axioms with each proposition; while Eudoxus (355 B.C.)
invented proportion and devised the method of exhaustions,

1“The Philosophy of Arithmetic,” Dr. Edw. Brooks.
2
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one form of the idea of limits which he applied in geometry.

About 300 B.C., Euclid collected and systemized the geom-
etry and number-work of his time, invented some new propo-
sitions and made a volume on the ‘‘Elements of Geometry.”
This work of fifteen books remained the standard text-book
of geometry the ‘“Euclid,” of the following twenty centuries.
The work gives rules for the geometrical construction of various
figures, as well as the proof of numerous theorems. He also
wrote a volume on Conics and Geometrical Optics.

Aristotle (384—322 B.C.), the famous Greek teacher, often
mentioned as one of the founders of Science, is notable for
his voluminous writings on philosophy, on natural history and
on geometry, which in part directed attention to the study of
nature by direct observation. But there is no doubt that his
teaching on the theory of motion and some of his notions on
equilibrium were erroneous. His great reputation as a natural
philosopher gained acceptance for some of his opinions for
eighteen centuries after his time, and as they were wrong, this
was a great impediment to the development of the science of
mechanics. Even as late as 1590, Galileo felt the strength of
the partisans of the erroneous Aristotelian philosophy who
forced him from the University of Pisa.

By 200 B.C., four centuries after Thales, the Greeks had
brought their geometry to a high stage of perfection. Apol-
lonius, of Perga (d. 205 B.C.), published about this time a
treatise on conic sections and geometry containing over four
hundred problems which left little for his successors to improve.
His problem, ‘‘to draw a circle tangent to three given circles
in a plane,” found in his tretaise on “Tangency,” has baffled
many later mathematicians.

His studies on astronomy were the basis of Ptolemy’s expo-
sition of planetary motions and his goemetry has been dis-
covered in two distinct Arabic editions, indicating its influence
on Moorish mathematics of the ninth and tenth centuries. He
also wrote on methods of arithmetical calculation and on statics,
but this work is overshadowed by that of his contemporary
Archimedes, who appears to have co-ordinated the scattered
information on statics and to have contributed largely to it.
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What Euclid did for geometry Archimedes tried to do for Sta-
tics. In this he was in part at least successful. For he de-
veloped a body of correct mechanical doctrine which still finds
place to-day in our elementary text books of this science.

. 3. THE CONTRIBUTIONS OF ARCHIMEDES.
(287-212 B.C.)

Archimedes, the greatest mathematician of antiquity, the
son of a Greek astronomer, had the advantage of a good train-
ing in the schools of Alexandria, and then retired to Syracuse
in Sicily, where he devoted himself to the study of mathematics
and mechanics.

We know his work through the manuscripts and the books
which have come down to us, and by references to him in the
classics which give us some slight additional data. Some of
his writings we have in the original Greek, while others exist
only in the Latin or Arabic translation. They may be briefly
summarized as follows:

ExTANT WORKS.

1. On the Sphere and Cylinder.

Two books containing sixty propositions relative to the
dimensions of cones and cylinders, all demonstrated by
rigorous geometric proof.

2. The Measure of the Circle.

A book of three propositions. Prop. I proves that the area
of a circle is equal to a triangle whose base is equal to
the circumference and whose altitude is equal to the
radius. Prop. II shows that the circumference exceeds
three times the diameter by a fraction greater than 10/70
and less than 10/71. Prop. III proves that a circle is to
its circumscribing square nearly as 11 to 14.

3. Conoids and Spheroids.

A treatise of 40 propositions on the superficial areas and
volume of solids generated by the revolution or conic
sections about their axis.

4. On Spirals.
A book of 28 propositions upon the curve known as the
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spiral of Archimedes which is traced by a radius vector
whose length varies as the angle through which it turns.
5. On Equiponderants and Centers of Gravity.

Two volumes which are the foundation of Archimedes’

- theory of Mechanics. They deal with statics. The first
book contains fifteen propositions and eight postulates.
The methods of demonstration are those often given
to-day for finding the center of gravity of—

(a) any two weights,
(b) any triangle,
(¢) any parallelogram,
(d) any trapezium.
The second volume is devoted to finding the center of
gravity of parabolic segments.
6. The Quadrature of the Parabola.

A book of 24 propositions demonstrating the quadrature
of the parabola by a process of summation—a kind of
crude integration.

7. On Floating Bodies.

A treatise of two volumes on the principles of buoyancy
and equilibrium of floating bodies and of floating para-
bolic conoids. '

"8. The Sand Reckoner, or Arenarius.

A book of arithmetical numeration which indicates a method
of representing very large numbers. He indicates that
the number of grains of sand required to fill the universe,
is less than 10%® It contains an idea which might have
been developed into a system of logarithms.

9. A collection of Lemmas,—fifteen propositions in plane
geometry.

Archimedes is also credited with these lost books, though
some authorities dispute the fact that he ever wrote such

volumes; that he worked upon the subjects there is little
doubt. ‘
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Lost WORKs.!
1. On Polyhedra.
2. On the Principles of Numbers.
3. On Balances and Levers.
4. On Center of Gravity.
5. On Optics.
6. On Sphere Making.
7. On Method.
8. On a Calendar or Astronomical Work.
9. A Combination of Wheels and Axles.
10. On the Endless Screw or Screw of Archimedes.
Archimedes is to be credited with the development of a
theory of the lever, the principle of buoyancy, the theory of
numbers and numeration. He was the first to apply correctly
geometry and arithmetic to mechanical problems of equi-
librium, and he thus founded the science of applied or mixed
mathematics. He founded and developed the theory of statics
in reference both to rigid solids and fluids, but he by no means
completed it. He developed no correct theory of dynamics.
The following quotations from his book on Equilibrium, or
the ‘“Center of Gravity of Plane Figures,” give an insight
to his mental attitude and an idea of his method of approaching
problems in mechanics.

Booxk 1.

“I postulate the following:

1. “Equal weights at equal distances are in equilibrium, and
- equal weights at unequal distances are not in equilibrium but
incline toward the weight which is at the greater distance.

2. “If, when weights at certain distances are in equilibrium,
something be added to one of the weights, they are not in
equilibrium but incline toward that weight to which addition
is made.

3. “Similarly, if anything be taken away from one of the
weights, they are not in equilibrium but incline toward the
weight from which nothing was taken.

1Accounts of the recently discovered ‘lost works' of Archimedes will
be found in the following periodicals: Hermes, vol. 42; Bulletin of the Amer-
swan Mathematical Society, May, 1908; Bibliotheca mathematica, vol. 7,
p. 321.
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4. ‘“When equal and similar plane figures coincide if applied
to one another, their centers of gravity similarly coincide.”

5. “In figures which are unequal but similar the centers
of gravity will be similarly situated. By points similarly
situated in relation to similar figures, I mean points such that,
if straight lines be drawn from them to the equal angles, they
make equal angles with the corresponding sides.”

6. “If magnitudes at certain distances be in equilibrium
(other) magnitudes equal to them will also be in equilibrium
at the same distances.”

7. “In any figure whose perimeter is concave in (one and)
the same direction the center of gravity must be within the
figure.” This is the way he proves the equilibrium of the
lever.

“Proposition 1.”

“Weights which balance at equal distances are equal.”

“For, if they are unequal, take away from the greater the
difference between the two. The remainders will then not
balance—(Postulate 3); which is absurd.”

“Therefore the weights cannot be unequal.”

“Proposition 2.’

“Unequal weights at equal distances will not balance but
will incline toward the greater weight.”

“For take away from the greater the difference between the
two. The equal remainders will therefore balance (Postulate
1). Hence if we add the difference again the weights will not
balance but will incline toward the greater (Postulate 2).”

Proposition 3.

Proves that weights will balance at unequal distances, the
greater weight being at the lesser distance, by a similar kind
of reasoning.

Proposition 4.

Shows similarly that two equal weights have the center of
gravity of both at the middle point of the line joining their
centers of gravity.
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Proposition 5.

Proves, if three equal magnitudes have their centers of
gravity on a straight line at equal distances, the center of
gravity of the system will coincide with that of the middle
magnitude. He then proves,

Propositions 6-7.

Two magnitudes, whether commensurable (Prop. 6) or in-
commensurable (Prop. 7) balance at distances reciprocally
proportional to the magnitudes.

1. Suppose the magnitudes 4, B to be commensurable and
the points 4, B to be their centers of gravity.

Let DE be a straight line so divided that at C

A:B=DC:CE

We have then to prove that, if 4 be placed at E and
B at D, C is the center of gravity of the two taken together.

L E ¢ H D K

F1G. 1.

Since A and B are commensurable, so are DC, CE. Let N
be a common measure of DC, CE. Make DH, DK each equal
to CE and EL (on CE produced) equal to CD. Then EH =
CD. Since DH = CE therefore LH is bisected at E, as HK
is bisected at D.

Thus LH, HK must each contain N an even number of
times.

Take a magnitude O such that O is contained as many
times in 4 as N is contained in LH whence

A:0=LH:N
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But
B:A=CE:DC
= HK : LH

‘‘Hence B :0 = HK : N, or O is contained in B as many
times as N is contained in HK.”

“Thus O is a common measure of 4, B. Divide LH, HK
into parts each equal to N, and 4, B, into parts each equal to
0. The parts A will therefore be equal in number to those of
LH, and the parts of B equal in number to those of HK.
Place one of the parts of 4 at the middle point of each of the
parts N of LH, and one of the parts of B at the middle point
of each of the parts N of HK.

“Then the center of gravity of the parts of 4 placed at
equal distances on LH will be at E, the middle point of LH
(Proposition'5, Cor. 2), and the center of gravity of the parts
of B placed at equal distances along HK will be at D the middle
point of HK.

“Thus we may suppose A itself applied at E, and B itself
applied at D.”

“But the system formed by the parts O of 4 and B to-
gether is a system of equal magnitudes even in number and
placed at equal distances along LK, and, since LE = CD and
EC = DK, LC = CK so that C is the middle point of LK.
Therefore C is the center of gravity of the system ranged
along LK. ‘

““Therefore A acting at E and B acting at D balance about
the point C.”

The incommensurable case.

‘‘Suppose the magnitudes to be incommensurable and let
them be (4 = a) and B respectively. Let DE be a line divided
at C so that

' (A+4+a):B=DC:CE

“Then, if (4 + a) placed at E and B placed at D do not
balance about C, (4 4+ a) is either too great to balance B
or not great enough.”

“Suppose, if possible that (4 + a) is too great to balance B.
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Take from (4 + a) a magnifude smaller than the deduction
which would make the remainder balance B, but such that
the remainder 4 and the magnitude B are commensurable.

»
>
o

E c D

FiG. 2.

““Then, since 4, B are commensurable and
A:B<DC:CR

A and B will not balance (Prop. 6) but D will be depressed.

“But this is impossible since the deduction 4 was an in-
sufficient deduction from (4 + a) to produce equilibrium, so
that E was still depressed.

“Therefore (A + a) is not too great to balance B; and
similarly it may be proved that B is not too great to balance
(A + a). '

“Hence (4 + a), B taken together have their center of
gravity at C."” :

Thus it is seen that the demonstration rests upon the axiom
that equal bodies at the ends of equal arms of a rod supported
at its middle point will balance each other. From this he
proves that the bodies will be in equilibrium when their dis-
tances from the fulcrum are inversely as their weight, and all
his determinations are based on these propositions. All his
investigations are limited to the case of forces perpendicular
to straight lever arms, he does not appear to have grasped
the idea of ‘“moments” or of ‘‘equal work” up and down.
These conceptions were not fully attained until eighteen
centuries later.

To Archimedes also belongs the fame of establishing the
principle of buoyancy commonly known as Archimedes’ prin-
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ciple. The account of this discovery given by Vitruvius in
De Architectura, Liber IX, is as follows: ‘“Although Archi-
medes discovered many curious things proving his great intelli-
gence, that which I now narrate is the most remarkable.
Hiero, when he obtained the regal power in Syracuse, having
on the happy turn of his fortunes decreed a votive crown of
gold to be placed in a certain temple, commanded it to be made
of great value, and assigned for the purpose an appropriate
weight of metal to the goldsmith. The latter in good time
presented the crown to the king beautifully wrought and of
correct weight.

But a report having been circulated, that some of the gold
had been supplanted with silver of equal weight Hiero was
indignant at the fraud, and appealed to Archimedes for a
method by means of which the theft might be detected.
Charged with this commission he by chance went to a bath,
and on getting into the tub perceived that just in proportion
that his body became immersed, in the same proportion the
water ran out of the vessel. Whence catching at the method
to be used in solving the king’s difficulty he leapt out of the
vessel in joy, and ran naked shouting in a loud voice, €Jpn«ka,
I have found it!”’

It seems that Archimedes’ conception was, that a body
immersed in water must raise an equivalent quantity of water
just as though the body lay on one arm of a balance and the
water on the other arm. Buoyancy he conceived as a case
of equilibrium or equipoise by a balance of weights. If the
object overbalances the water displaced it sinks. These ideas
he elaborated in his book on Floating Bodies.

One of his fundamental assumptions in this work is that
it is an essential property of a liquid that the portion that
suffers less pressure is forced upward by that which suffers
greater pressure and that each part of the liquid suffers
pressure from the portions directly above it, if the latter be
sinking or suffer from another portion. From this he elabo-
rates the ideas,

(1) That when a heavy body is entirely surrounded by liquid
it is buoyed up or balanced in part, by a force equal to the
weight of the liquid it displaces;
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(2) That when bodies lighter than a fluid are wholly im-
mersed in it, they displace an amount of liquid greater than
their own weight and so if left free to adjust themselves they
rise to the surface and float so that only so much of their bulk
is submerged as will displace sufficient liquid to balance them-
selves;

(3) When a submerged body displaces a magnitude of liquid
which just balances itself it is in equilibrium anywhere below
the surface of the liquids.

It follows from the story of the gold and silver crown that
Archimedes must have arrived at the idea of relative density
or specific gravity but he could not distinguish mass and weight.
The favorite word in his discussions is the abstract mathemati-
cal term magnitude by which he often seems to mean mass.
But how mass gets that drag downwards, or how the force or
weight is related to mass he did not attempt to explain. Cer-
tainly he presents no theory on the subject in any of his extant
works. ,

Some convenient mechanical appliances are by tradition
commonly attributed to Archimedes, notably the Archimedean
screw, or pump, a device said to have been invented by him
while in Egypt for use in the irrigation works. His practical
inventions indicate that he, in common with all the eminent
masters, was not so lost in his theoretical studies as to be out
of touch with practical affairs.

It should be noted that'the geometry of Euclid was a geom-
etry of forms and positions whereas that of Archimedes was
a geometry of measurement. This new trend is seen in the
attention that Archimedes gives to problems of the quadrature
of curvilinear plane figures (such as the parabola), and to the
cubature of curved surfaces. This development of geometry
placed it in most intimate connection with mechanics, for
progress in the latter depended upon accuracy of measure-
ment.

Therefore we are indebted to Archimedes not only for the
mechanical devices and rules commonly associated with his
name, but also for having given to geometry that trend of de-
velopment into a science of measurements which made it of
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such assistance in developing mechanics. Archimedes himself
well illustrated this in the field of statics. Later when the
labors of Galileo and Stevinus had developed the method of
representing forces, velocities and acceleration by lines, it was
by similar geometrical methods that Newton in his Principia
presented the proofs of theorems in dynamics.

Ctesibius and Hero (cir. 150 B.C.) are sometimes mentioned
as the successors of Archimedes. Following Archimedes’
method they formulated a table of mechanical appliances set-
ting forth the five simple principles or ‘‘simple machines,”
about as they are listed in our elementary textbooks of physics
to-day. But though they made several practical inventions
such as the forcing pump, the clepsydra and air-gun and con-
trived curious fountains and syphons, they do not appear to
have added anything to the principles of mechanics, nor do
they appear to have comprehended the theory of their mechan-
ical appliances, except in so far as the principles of Archimedes
could explain them.

There is no evidence to show that the principle of work
was understood or appreciated in ancient times in spite of

F

\
\
[
\
'
'
1]
'
[]
'
'
\I‘.
~F

Fi1G. 3.

the fact that we feel almost instinctively now, that in a lever
such as Fig. 1, the force times the distance it moves (i. e.,
the work applied), is equal to the resistance times the distance
it moves, (4. e., the work done) if we ignore friction, and that
the algebraic sum of the positive and negative work is zero.
The simple equation of work, F X S = R X S’ was Chinese to
Archimedes, for algebraic symbolic notation was not known
in mechanics in his time. Archimedes does not appear to have
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attained to the conception of ‘“‘moment,” nor “principle of
-work,” nor ‘“‘conservation of center of gravity.” He made
equilibrium in the lever depend on the length of the lever-arm
and the “magnitude” of the bodies hung on the ends of the
lever-arms without understanding the terms moment, mass,
work or weight in the modern sense.

The physical science of the Greeks was limited to calcula-
tions based upon:

(1) The law of the lever,

(2) Center of gravity,

(3) Density,

(4) Hydrostatic pressure,

(5) Arithmetical relations of tones,

(6) The law of the reflection of light.

Ancient Greece was a slave country. At the height of its
glory Athens contained twenty slaves to one free citizen. The
slaves were permitted no initiative and there was no incentive
to mechanical invention. Indeed, the application of natural
forces and the substitution of machines for slave-labor would
have been viewed with alarm by all classes of the Greek state
as ushering in an industrial and social revolution. Inventors
and innovators therefore met scant encouragement in ancient
Greece.

The government was a close corporation of capitalist citizens
whose profits depended upon the slaves. Furthermore it was
to the interest of the government to keep the slaves steadily
employed yet not oppressively burdened. Conditions of life
were favorable in the Greek peninsula, and history records
very few slave insurrections. There was no urgent demand for
mechanical invention and no reward for it. Only free men
have an interest in the improvement of their tools and only
under the laws of property and of patents is there encourage-
ment and incentive to mechanical invention.

With the extension of the Roman power on the fall of
Syracuse, in which Archimedes lost his life, conditions were
not favorable to the advance of science. The Romans, a
practical, commerical, military people did not advance the
theory of mechanics. Their talents lay in administration
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rather than in science. They used the simple machines prac-
tically and successfully on land and on sea, in war and in
peace, and by trireme and catapult extended their dominon
over the known world. In their marvellous public works
aqueducts, baths, fountains, sewers, roads, public buildings,
and monuments, we find examples of the art of construction
rather than of the science of engineering.

They built by ‘“rule of thumb’ and experience based on
trial, using a large surplus of materials. No delicate appre-
ciation of stresses is apparent in their architecture. It is
massive, heavy and monumental, without subtlety of artistic
conception or of scientific design. It is true the Romans in-
troduced as common features in their buildings, arches, vaults
and domes which were used by the Greeks, Persians and Egyp-
tians but rarely, but they used them without theoretical
calculation. Some of their buildings were supplied with run-
ning water carried in lead pipes, and were heated by hot air
in tile flues but they had not grasped even the elements of
hydraulics or thermodynamics. It was not till after 1600 A.D.
that the principle of moments and the law of action and re-
action upon which the common engineering calculations are
based, were fully apprehended.

Nor did Roman philosophers and writers busy themselves
with mechanical science. The works of Lucretius (95-52
B.C.), Vitruvius (8526 B.C.), Seneca (2-66 A.D.) and Pliny
(23~79 A.D.) contain no new idea in mechanics. For prac-
tically twenty centuries no advance was made in the theory
of mechanics after the time of Archimedes. ‘Vir stupendee
sagacitatis, qui prima fundamenta posuit inventionum fere
omnium in quibus promovendis atas nostra gloriatur’ is the
tribute Wallis penned two thousand years later, when Latin
was still the language of scholars and engineers.

The Romans left their mark on civilization as the annals of
government, law and language testify, but there does not
appear to their credit the discovery of a single scientific prin-
ciple or the invention of an important mechanical appliance
for mitigating the drudgery and toil of mankind. Their slaves
and captives labored long and hard, tilling the fields, in the
galleys, or with brick, tiles and concrete on the aqueducts.




THE SCIENCE OF MECHANICS. 31

Every conquest delivered to the Imperial City a new supply
of labor. Besides, in tranquil times the legions, kept from mis-
chief by employment on roads, bridges and wall building,
supplied abundant labor. In a word the Romans had neither
interest in the theory of mechanics, nor the pressing necessity
for improved mechanical appliances, as they commanded an
abundance of cheap labor. For these reasons this intensely
practical people appears to have made no contribution to the
science of mechanics.
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PART II.
I. THE MEDIZEVAL PERIOD, 500-1500 A.D.

1. THE MEDIEVAL ATTITUDE TOWARD SCIENCE.

The period of societal reconstruction which followed the
decay of the Roman Empire was not a time of scientific re-
. search or achievement. It was an age of semi-barbarism,
tumult and superstititon. Those of gentle and scholarly dis-
position who sought the quiet asylum of the Church found
there a faith in an established cosmography, which did not
encourage independent research and investigation of natural
phenomena. ,

Dr. Andrew D. White, of Cornell, says:! “The establishment
of Christianity, beginning a new evolution of theology, arrested
the normal development of physical sciences for fifteen hundred
years.” This is in part true and it was due, during the first
thousand years at least, to a widespread belief, based on the
New Testament, that the end of the world was soon at hand.
St. Paul had preached: ‘‘For ye know perfectly that the day
of the Lord so cometh as a thief in the night,” and St. Peter
had reiterated: ‘“The day of the Lord will come as a thief in
the night in the which the heavens shall pass away with a
great noise and the elements shall melt with fervent heat and
the earth also and the works that are therein shall be burned

”

up.

It was widely proclaimed that the world was in its last days,
that just as the antediluvian world was destroyed in the flood,
so now the coming of thee Lord in a cataclysm of fire was to be
awaited from day to day. With such a stupendous supernatural
event impending and the termination of the world imminent,
devotion to mechanical science was sheer folly. Even .such
science as had been developed was now become vain and trivial,
and was neglected in the face of the duty to watch and to pray. .

The end of the world was announced for various specific

1“Warfare of Science and Theology,” vol. 1, p. 375.

3 33
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dates notably 1000 A.D., and all endeavor except ‘‘saving
souls” was pronounced folly and the inspiration of the evil
one. And when, after centuries of waiting, the existing order
was found going along just as ever, and curious men began
to turn again to worldly affairs, they found theology had woven
a magic circle and defied any one to find truth outside of it.

In place of verified experience, a literal belief in the Old
and New Testament offered a precarious theophany and
created a frenzied terror of supernatural agencies. Demons,
imps and devils rode the wind and disported themselves to
the fevered imagination of the time as the cause of the most
common occurrences.! Any prying into the secrets of nature
was held to be dangerous to body and soul. Physics and
chemistry, such as there was, were tabooed as the devil's
own arts, and experimental research was anathema.

Stories of interference with the law of gravitation by the
devil and the saints are common among the legends of this
period. A story published in the Dialogues of St. Gregory
the Great, Vol. II, illustrates this belief. During the con-
struction of Monte Cassino about 530, one day the builders
found a stone which their united efforts could not move. They
reported this to St. Benedict, “who instantly knew the devil
was hanging on to it.”” He exorcised the devil and the stone
which before was too heavy for six men became so light that St.
Benedict lifted it with ease and put it into the wall. A similar
account of the devil increasing the gravity of two marble
columns at the Cathedral of St. Virgile, Bishop of Arles, about
600, is given in ‘‘Les Petits Bollandistes,” Vol. I1I, p. 162.

Even after the year 1000 A.D., ideas, which to us appear
most fantastic, were handed down for generations apparently
without anyone doubting their verity or making any endeavor

1For the spirit of the time refer to Longfellow’s “Christus; a mystery.”

Safe in this Wartburg tower I stand
Where God hath led me by the hand, . . .
Safe from the overwhelming blast
Of the mouths of Hell, that followed me fast,
And the howling demons of despair
That hunted me as a beast to his lair.
(Second interlude.)
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to verify them by experiment. When Albertus Magnus (cir.
" 1250), a famous philosopher of the thirteenth century, believed
that the diamond could be softened in the blood of a stag fed
on parsley and that a sapphire would drive away boils, it is
hardly to be expected that even the learned of this period
would have any conception or appreciation of a science of
mechanics.

Though St. Paul had advised, “Prove all things, hold fast
to what is good,”’ St. Augustine commanded in vigorous Latin
—‘“Major est Scriptura auctoritas quam omnis humani ingenii
capacitas,” 4. e., accept nothing except on authority of Scrip-
ture for that is greater than all the powers of the human mind.
When asked, might there not be inhabitants on the other side
of the earth, he answered, it is impossible that there should
be inhabitants on the other side of the earth, for on judgment
day such men could not see the Lord descending through the
air. Discussion was closed by authority and debate came
to be restricted to such questions as, whether an angel in
passing from one spot to another, had to pass through the
intervening space.

It came to be considered blasphemous to wish for or to
attempt to better earthly conditions, and presumptuous to
attempt to explain phenomena except in terms of mystic
theology. So, in the course of the centuries, an unfortunate
conviction was developed that science was dangerous and evil.
This persisted beyond the Reformation. Martin Luther (1483~
1546) complained: “The people give ear to an upstart astrologer
(Copernicus) who strives to show that the earth revolves,—
but Sacred Scripture tells us that Joshua commanded the
sun to stand still, not the earth.”

In much the same spirit, Melanchthon (1497-1560) declared:
“It is the want of honesty and decency to say that the earth
revolves and the example is pernicious. It is the part of a good
mind to accept the truth as revealed by God and to acquiesce
in it.” Indeed, theologians of all persuasions, have, at some
time, denounced the Copernican idea, for Scripture declares the
“sun cometh forth as a bridegroom’—and ‘‘the earth standeth
fast forever.” When a theologian did deign to debate such a
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topic, his argument was likely to be like that of Fromundus of
Antwerp who, in refuting the revolution of the earth, declared
that ‘‘the buildings would fly off with such rapid motion, and
that men would have to be provided with claws like cats to
enable them to hold onto the earth’s surface.”

The theologian who declared in Galileo’s time (1600) that
‘“‘geometry is of the devil,” and ‘“‘that mathematicians should
be banished as the authors of all heresies,” was but fanatically
defending his traditions. The matter is summed up by Huxley
in his Essay on Science and Culture (p. 145), where he says:
“The business of the philosopher of the middle ages was to
deduce from the data furnished by theologians, conclusions in
accordance with ecclesiastical decrees. They were allowed the
high privilege of showing by logical process how and why that
which the Church said was true and must be true and if their
demonstrations fell short of or exceeded this limit, the church
was maternally ready to check their aberrations; if need be by
the secular arm.

Between the two, our ancestors were furnished with a com-
pact and complete criticism of life. They were told how the
world began and how it would end; they learned that material
existence was a base and insignificant blot on the fair face of
the spiritual world and that nature was to all intents and
purposes, the playground of the devil; they learned that the
earth is the center of the visible universe, and that man is the
cynosure of things terrestrial, and more especially was it incul-
cated that the course of nature had no fixed order but that it
could be and constantly was, altered by the agency of innumer-
able spiritual beings, good and bad, according as they were
moved by the deeds and prayers of man. The sum and sub-
stance of the whole doctrine was to produce the conviction that
the only thing really worth knowing in this world was how to
secure that place in a better, which under certain conditions
the church promised.” There was no place in such a scheme
for a science of mechanics.

To the unbiased student there is a measure of truth in the
remarks of Dr. White and Dr. Huxley and yet in justice it
must be said that they also carry a sting and a reproach which
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is somewhat unfair. The attitude of the Middle Ages was a
growth; it was developed in, and was not imposed on Europe.
Whatever reproach there is, should be placed where it belongs
on the general ignorance and stupidity of the inhabitants of
. Europe during this period. There was no conscious conspiracy
to retard progress if we except the bigotry, fanaticism and
perversion which inevitably accompany ignorance anywhere
and in any time. As the general average of intelligence rose,
the situation improved. It cannot be denied that the Church
was the great conserving and civilizing agency of this era.

All the learning of the ancients was not lost or destroyed
outright, but continued to filter through Europe until it gained
force under the favorable circumstances of the so-called
Renaissance about 1600. But it is most unfortunate that
early Christian fanaticism burned and destroyed so much that
was good, though ‘“Pagan.” In the East, the Greek School
at Alexandria preserved, for some centuries A.D., the learning
of the ancients, but, about the fifth century, there developed
within the church a pronounced spirit of hostility toward the
scientific spirit.

Persecutions became common and culminated in 415 A.D.
with the murder of Hypatia and the breaking up of the Alex-
andrian University. In a burst of religious fervor, the schools
and a portion of the library were destroyed. The scholars
were forced to flee to Byzantium, where schools grew up.

In the west, after 500 A.D., Roman civilization finally went
down under the successive inroads of barbarians from the
North and culture and refinement were eclipsed in Italy.

Under Constantine (306—337), Christianity was recognized
(313) and Byzantium rebuilt as the Eastern capital. Until
476, there were two capitals but the center of wealth and
population shifted steadily to this new ““City of Constantine.”
Constantinople soon became the wealthiest and most enlight- -
ened city of the world, a quiet retreat for scholarly pursuits.
Here many ancient manuscripts on mathematics and mechanics
were read, copied, and preserved for posterity.

On the capture of Constantinople, a thousand years later
in 1453, this Greek and Byzantine learning was spread to
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various cities of Western Europe by traveling scholars, and
stimulated scholarship in the West. As the medizval uni-
versities grew up from the church schools, their enthusiasm
was naturally not in the direction of scientific or mechanical
investigation. An age of faith is not inclined to be an age
of investigation, and the medizeval period developed little
mechanical progress.

The one notable indirect contribution to mechanics in this
period was the introduction about 1200, of Hindu arithmetic
and Arabic algebra into Europe through the Moors of Spain.
Among the ancients, primitive number pictures such as the
Egyptian hieroglyphics and the Babylonian cuneiform sym-
bols were used for the digits.

The Greeks used the letters of their alphabet «, 8, v, 8, etc.,
to represent numbers. The Roman system was little better
and no extensive calculation could be performed without the
aid of a registering instrument of colored beads called an
abacus. Our present powerful system of ten symbols, the
‘“ten digits,” and the ‘“‘method of position,” whereby their
value depends on their place, seems to have originated with
the Hindus, and was carried into Europe by the Arabs.

Leonardo Fibonacci of Pisa (1175) among others is credited
with introducing it into Italy by his book Liber Abaci (1202).
His introduction reads—*‘The nine figures of the Hindoos are
938,7,6,5, 4,3,2, I. With these nine and with the sign o
which in Arabic is called sifr, any number may be written.”
It is likely that convenience and serviceableness in commerce
brought the system into vogue through the trade of Genoa
and Venice with the Orient. From these ports the merchants
probably spread it by the great overland trade routes through
Nuremberg and the Rhine to Antwerp, Bruges and the
towns of the Hanseatic League. The money exchanges and
the channels of trade probably had more to do with spreading
it over Europe than the philosophers.

The college accounts in the English Universities are found to
have been kept in Roman numerals up to about the year 1550
and even later. After this date the Arabic system generally
displaced the Roman method.

"
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2. THE INFLUENCE OF MooORISH CULTURE.

Before the time of Mohammed (570-632), the Arabs had
played an inactive part in history; but, when the wandering
tribes of the desert had been welded into a nation by the
fiery enthusiasm of the prophet and his fanatical followers,
they began to be a factor in the civilization of both East and
West.

Within a decade after Mohammed’s death, the faith had
conquered Arabia, Palestine, Syria and Persia, and within a
few years more, the Moslems threatened Europe from the
northern coast of Africa. By 711 all Spain, except Asturia,
was subject to their sway, and their dominion began to ap-
proach in extent the glorious Empire of Rome. In their
opinion, the Koran, the new revelation, was destined to sup-
plant the Bible.

The Koran is evidently based on the Hebrew and Christian
scriptures. Islam is an offshoot of Christianity, modified to
suit the Arabic temperament, by a coloring of Oriental imagery
and fatalism. The theological structure of both is the same.
There is much the same scheme of rewards and punishments
with a tinge of predestination. The prohibition in the Koran
against ‘“‘graven images’’ was held to forbid the representation
of any human or animal form.

This had a marked effect upon their arts, and nodoubt encour-
aged the study of geometry and mathematics in general. On
the whole the Moslems seem to have been rather favorably dis-
posed toward pagan culture, regarding it with placid superi-
ority rather than enmity, and they never were hostile to the
scientific spirit. When in Europe the practice of medicine
was looked at askance, the Arabs were adept in medicine, and
their surgeons were in demand in the courts of Europe.

The nomadic Arabs had neither need nor desire for a science
of mechanics and the earlier caliphs were too busy establishing
their empire, to develop any of the arts and sciences. But
toward the end of the eighth century, when their religious
fervor was no longer at a white heat, the caliphs became
patrons of learning.
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Through the Greeks of the conquered provinces, the Moham-
medans became acquainted with classical learning and blended
it with the wisdom of the Orient, which they had from India
and Persia. From the tenth to the thirteenth centuries, the
Arabs were the teachers of Europe. They brought about,
within their dominions, a renaissance of the Greek culture.

As early as 800, under the caliphate of Haroun-al-Raschid,
Bagdad was a famous center of culture. Later, the Western
caliphs developed, at Cordova and Seville, schools and libraries
which equalled those of Constantinople and Bagdad, and made
these Spanish cities famous seats of learning.

In the tenth century, Cordova was one of the greatest
centers of commerce of the world and supported eighty schools.
The University of Cordova, with its library of 500,000 volumes,
became famous throughout Christendom. Philosophy, mathe-
matics, medicine, geography, astronomy and mechanics were
taught from Arabian translations of the masters of ancient
Greece, Persia, and India.

In working over this material, the Moorish scholars, as was
to be expected, developed new ideas and methods, especially
in mathematics, astronomy and alchemy. In mechanics and
geometry they studied and preserved for posterity the writings
of Archimedes, Euclid, and Aristotle. They developed known
principles and perfected methods, but it does not appear that
they made any very important advance. Extensive fortifica-
tions and irrigation works were developed by their engineers,
who were well versed in algebra and statics, but had but little
grasp of dynamics.

The English champion of Science, Professor Huxley, may
be again quoted to advantage on this topic. He says, “Even
earlier than the thirteenth century, the development of
Moorish civilization in Spain and the great movement of the
Crusades had introduced the leaven which, from that day to
this, has never ceased to work. At first, through the inter-
mediation of Arabic translations, afterwards by the study of
the originals, the western nations of Europe became acquainted
with the writings of the ancient philosophers and poets, and
in time with the whole of the vast literature of antiquity.
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Whatever there was of high intellectual aspiration or dominant
capacity in Italy, France, Germany, and England, spent itself
for centuries in taking possession of the rich inheritance left
by the dead civilizations of Greece and Rome. . . . There
was no physical science but that which Greece had created.”
This found its way into Europe in part through Arabic trans-
lations of Greek and Latin texts.

The celebrated Moslem scholar, Al-Khuwarizmi or Mo-
hammed Ibn Musa (cir. goo A.D.) wrote voluminously on
mathematics, on Hindu arithmetic, the sun-dial, and the
astrolabe. His ‘‘al-jabr-w’al-muqabalah,” that is the ‘red-
integration and the comparison,” a treatise on algebra, gave
the name to this science.

The Arabic numbers and the algebraic method were an
immense advance over the clumsy Roman numbers. Without
these, it is hardly possible to apply mathematics extensively
to mechanical problems. This indicates one reason why the
ancients did not advance further in the practical applications
of mechanical science. Much advance in mechanics was
simply impossible with the old Roman arithmetic which
possessed a most awkward duodecimal system of fractions.
Decimal fractions date from 1600 when Stevinus, the Flemish
engineer, recommended them in his writings.

Of the numerous Christian scholars who attended the Moor-
ish Universities of Cordova and Seville, the most famous was
Gerbert, who later became Archbishop of Rheims, and who as
Pope Sylvester II (999-1003), exercised a wide influence in
Christendom. He is credited with the introduction in Europe
of the Arabic mathematics.

The Moors made small original contributions to the science
of mechanics, but they are to be credited with the preservation
and development of the Greek and Indian knowledge of arith-
metic, geometry, and mechanics and the diffusion of it through-
out Europe. The Arabic words in our language indicate the
breadth of their influence:—algebra, alcohol, Aldebaran,
almanac, amalgam, alkali, borax, cipher, carat, minaret,
nadir, Vega, zenith, zero. Their invention of algebra and
development of the Arabic numerals and notation, while not
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a contribution to mechanics proper, had a most direct bearing
upon the future progress of the science, for without it, the
development of our analytical mechanics would probably have
been long delayed

With the coming of the ignorant and fanatical Turks under
Genghis Khan in the middle of the thirteenth century, Arabic
civilization rapidly declined and the development of mathe-
matics and mechanics was arrested in the Moslem domain.
Four hundred years of the Turks has made the once world-
renowned Byzantium, one of the most backward cities on the
globe. It was not till about 1890 that the Sultan would permit
a railway to run into Constantinople.

3. THE PERIOD OF THE RENAISSANCE.

The new order which slowly overcame and displaced the
conceptions of medizval times was the expression of a revo-
lution in the realm of thought. The Renaissance was a period
of breaking away from the ideas and ideals of the Middle Ages.
It was in part the result of the recognition of certain provinces
of thought and endeavor, which the medizval spirit either
ignored or condemned and in part the victory of certain
superior features of the civilization of Athens and Rome. The
inventions of printing, of gunpowder, of the mariner’s compass
and the discovery of America, accelerated this tendency, and
the religious, political and social changes followed.

With the weakening of the dictates of established authority,
men credited personal experience more. They slowly became
less biased and more open-minded in their opinions. Pagan
writings, which, in medizval times, were regarded with aver-
sion, if not fear and distrust, came to be studied with interest.
Good was found in the manuscripts of the infidel Moslems;
their writings were read with interest and appreciation, and
their arithmetic was adopted throughout Europe. All this
prepared the way for a new start in Science.

Even the theologians began to be dissatisfied with barren
dogmas. One of the first to break with the prevailing scholas-
ticism was Cardinal Nicholas of Cusa (d. 1464), who possessed
the independence to say that man was prone to err, that it
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was good to hold one’s opinions lightly, and to reject them
when they began to appear erroneous. He cultivated mathe-
matics and is said to have taught an imperfect heliocentric
theory.

The dawn of the period of the Renaissance may be set
at about 1450. Then humanity’s native curiosity overcame
the terrors of narrow theology. Confidence in the persistence
of the order of the universe gained ground and a general
interest in the things of the world resulted. The spirit of
inquiry soon became rife and with it came a healthy scepticism.
In the words of Machiavelli, men began to follow the real
truth of things rather than an imaginary view of them.

The mute evidence of cathedral churches left half completed,
or with one spire, or none, after the year 1400 or 1500, testifies
to the flow of human enthusiasm and energy toward other
channels. That so many mighty cathedrals could be con-
structed in Europe from 900 to 1400 A.D., without advance
in the science of mechanics, seems remarkable. But their
excellence is in the field of art and not in that of engineering.

Close acquaintance with them reveals to the engineer, poor
foundations, cracked arches,! crooked walls and leaning towers?
and settled piers,® quite in accord with the annals* of failure
and collapse which is the history of their construction. In
what constituted the spirit of their time, in imagination, in
fancy, in inversion of idea, in naivete of conception, they are

1In 1284 the central tower and the apse vaulting of Beauvais Cathedral
collapsed utterly. The dome of St. Peter's at Rome would have fallen
long since but for the iron bandage of chains placed about the dome in
1742 by Vanvitelli under the direction of Poleni.

2The Campanile at Bologna is a well-known example.

3Annales de Sevilla, 1677, “On Dec. 28, 1511, a split pillar (of Seville
Cathedral) brought down all the central tower and three great arches with
a noise that stunned the city. . . . By a miracle of Qur Lady of the Sea it
did not fall at once. . . . The Archbishop granted indulgences to all who
would assist in clearing away the debris.”” In 1890 it collapsed again.—The
utter and complete collapse of the Campanile of San Marco at Venice in
1902 is recent history.

4See Hamlin, p. 197, and Feree, Chronology of Cathedral Churches in
France.—*‘The unscientific Romanesque vaulting, etc., resulted in the entire
reconstruction of the cathedrals of Bayeux Bayonne, Cambray, Evreux,
Laon, Lisieux, Le Mans, Noyon, Poitiers, Senlis, Soissons and Troyes about
1200,” etc.
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wonderful, but to the trained eye of the engineer, the method
of trial and blunder through which they were achieved is
' apparent.

They are works of art par excellence, there is little science
here, except the experienced skill of the master masons,
whose closely guarded guild secrets seem to have been trade
tricks rather than a science of statics. No evidence has been
discovered tending to prove that the cathedral builders had
any clear conception of the law of action and reaction, or of
the general principle of moments, but they may have used a
crude method of determining the ratio of stresses by the funi-
cular method of using weighted strings passing over pulleys.
The first formal exposition of this method seems to be in the
works of the Flemish engineer Stevinus who was not born till
1548.

The opening of the Renaissance found the science of me-
chanics not very much further advanced than where Archi-
medes had left it. Now men began to study and speculate
on the subject. Most eminent and successful among those
who so occupied themselves are the following:

1. Copernicus (1473-1543), of Thorn in Prussia, who set
forth the system of astronomy since identified with his
name in “De Revolutionibus Orbium Ccelestium.”” He main-
tained that the sun is at rest and that the planets revolve
about it, and hinted that theology and mechanics are two
distinct branches of knowledge. = This quotation dimly presag-
ing the law of gravitation is interesting: ‘‘I am of the opinion
that gravity is nothing more than a natural tendency im-
planted in particles by the Divine Master by virtue of which,
they collecting together in the shape of a sphere do form their
own proper unity and integrity. And it is also to be assumed
that this propensity is inherent in the sun, the moon and the .
other planets.”

2. Leonardo da Vinci (1452-1519), the Italian painter,
whose manuscripts give a crude idea of the statical moment.

3. Peter Ramus (1515-1572), who contended in his thesis-
for the Master’s degree at the College de Navarre that all
that Aristotle taught was false. In his ‘““Animadversiones in
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Dialecticam Aristotelis,” 1543, he strenuously opposed the
scholastic dogmas.

4. Guido Ubaldi, an Italian, who published in his ‘“Mechani-
corum Liber” (1577), an imperfect idea of the statical moment.

Of this period is the work of two of the great contributors
to the science of mechanics, one in the field of statics, and the
other in the field of dynamics, of which he was the founder—
Simon Stevinus, an engineer of Bruges (1548-1620), and
Galileo, a professor of Florence (1564-1642).

4. THE CONTRIBUTION OF SIMON STEVINUS
(1548-1620).

Simon Stevinus of Bruges, a military engineer of Prince
Maurice of Orange seems to have been a man of genius in
experimental research as well as in practical engineering. His
earliest extant work is the ‘‘Beghinseln der Weegkonst” pub-
lished in Dutch at Leyden in 1586. The full account of his
researches is given in “Hypomnemata Mathematica’ (Mathe-
matical Memoranda) a large volume in Latin published at
Leyden 1608.

This volume covers in six books, the topics, arithmetic,
geometry, cosmography, practical geometry, statics, optics and
fortifications. The division on Statics treats of,

The elements of statics.

The theory of center of gravity.

Practical statics.

First principles of hydrostatics.

Practical hydrostatics.

. Miscellaneous topics.

This curious medley of theory and practical hints was no doubt
the encyclopedia of mathematics and mechanics of the period.
A revised edition in French was published by Albert Gerard in
1634. Both editions are very fully illustrated with wood cuts.

We do not find in it any mention of dynamics. Statics is
defined as the interpretation of the computations, proportions
and conditions of equilibrium (pondus) and of weight (gravi-

Rl Al ol ol
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tas). The weight of a body is defined as its (potentia descen-
sus in dato loco) force of descent in a given place. Center of
gravity is clearly conceived and defined.

Whereas Archimedes considered only the action of parallel -

forces at right angles to the lever, Stevinus considers the
action of forces in any direction and at any angle. He was
the first to give a solution of the problem of stability or in-
stability on an inclined plane. His presentation of the simple
machines differs from that of Archimedes in that he uses the
graphic method of the triangle of forces in the solution of them.

His principal contribution to the science is this idea of the
parallelogram or triangle of forces which he gives by many
graphical examples without definitely proving it as a general
principle at the beginning. It was not completely stated and
generally admitted as a principle until about ninety years
later when Varignon proved it geometrically and set it forth
in a paper before the Paris Academy (1687). In the same year
Newton and Lami also published a proof.

It is worthy of note that the first practical exposition of
the solution of engineering problems by graphical representa-
tion of forces or funicular polygons, now so commonly in use
to-day under the name of “‘graphic statics’’ was published by
engineer Stevinus, about three hundred years ago.

He arrived at the conception of the triangle of forces and
the conditions of stability on an inclined plane by his famous
‘“‘chain of balls on prism” experiment. This is given in the
Hypomnemata Mathematica as follows:

II Theorem. Proposition 19. If a plane triangle is placed
vertically with the base parallel to the horizon, and upon the
other two sides are placed single globes in equilibrium then
according as the right side of the triangle is to the left so is the
balancing effect of the left globe to the counterbalancing effect
of the right globe.

Given: Let ABC be the vertical triangle (Fig. 1) with base
parallel to the horizon with side AB double BC, and let the
globe D on AB be of equal size and weight to that E on BC.

Question: Demonstrate to us that as AB (2) is to BC (1)
so the balancing effect of globe E is to the counterbalancing
globe D.
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Construction. Let us arrange a crown of fourteen balls of
equal size and weight strung together at equal intervals, and
let there be three fixed points STV which are touched by the
string so to admit of motion of ascent or descent of the string
of balls.

Demonstration: If the balancing effect of the globes DRQP
is not equal to that of EF they must be heavier. Suppose
they are, then ONML being equal to GHIK, the eight globes

F16G. 4. Fi6G. s.
(From Liber Statica, Vol. IV, p. 34.)

D,R, Q, P,0, N, M and L must overbalance the six E, F, G,
H, I and K and the eight will go down and the six will rise up.
D will go down to O and I and K will take the place of E and
F. But, if this is so, the string of globes will now be situated
as before and by the same cause the eight globes on the left
will go down and the six on the right will go up, which is
saying that the globes of themselves produce continual and
eternal motion. This is false. Therefore the part of the
string DRQPNML holds the part EFGHIK in equilibrium.
If from equal things equal are taken, equals remain, therefore
subtracting ONML and GHIK, DRP(Q) balances EF. But
four being held in equilibrium by two, E must be doubly as
effective as D. Therefore as the side B4 (2) is to the side
BC (1) so the balancing effect of globe E is the counter-
balancing effect of globe D.

As a corollary it follows that the four balls and the two balls



48 THE SCIENCE OF MECHANICS.

may be concentrated in globes of corresponding magnitudes
as indicated in Fig. 2. Or a device like Fig. 3 may be em-
ployed.

From this Stevinus comes by corollary to the study of the
condition of equilibrium on an inclined plane, which he proves

FiG. 6. FiG. 7.
(From Liber Statica, Vol. IV, p. 36.)

by the diagram, Fig. 4. This diagram is the earliest exposition

of the triangle of forces.

He then generalizes the principle for practical use, in Figs. ,

5 and 6, where CE is to EO as the weight of the body is to the
pull P. From this principle the theory of the funicular polygon
is then developed as indicated in Figs. 6 and 7.

From the funicular polygon he advanced to the considera-
tion of the conditions of statical equilibrium in each of the
simple machines, referring back to his proof of the inclined
plane. Nowhere does he state the principle of the parallelo-
gram of forces explicitly as a general rule from which all cases
of equilibrium in machines may be deduced. In the chapter
on practical statics the simple machines are fully expounded

\
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and their applications indicated in illustrations showing cask
being moved into warehouses, etc.

The chapter on hydrostatics is also very practical. The
weight of a cubic foot of water at Leyden is noted (62 pounds),

Fi1G. 10. F1G. 11.
(From Liber Statica, Vol. IV, p. 162.)

and suggestions on ship design are given. It is a question as
to how much of Archimedes’ Hydrostatics was known to
Stevinus, but the probability is strong that Stevinus dis-
covered, or at least proved the principle of Archimedes by his

B
F1G6. 12. Fi1G. 13. F1G. 14.
(From de Hydrostatices Elementis, p. 119.)

own method. He clearly set forth for the first time the fact
that the pressure of a liquid is independent of the shape of the
containing vessel and depends upon the height and area of the
base. His method of reasoning is simple and convincing and
worthy of quotation.

4
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Suppose a mass of water 4 in a jar of still water. This cube
is in equilibrium. For, if not, let us suppose it descends, then
the water which comes into its place must also descend when
it comes into that same place and under similar conditions;
but, this leads to perpetual motion which is absurd and con-
trary to our experiences. Therefore the cube 4 does not move
down nor up. It is in equilibrium. If now we suppose the

surface of the cube 4 to become solidified, this surface or
- ‘“‘vas superficiarium’’ will be subjected to the same circum-
stances of pressure.

When it is empty it will suffer an upward pressure equal to
the weight of the absent water which balanced the upward
pressure. If we fill it with any other substance of any specific
gravity it is plain that the loss in weight of that substance in
water is equal to this same upward pressure which is equal
to the weight of the water displaced. Figs. 9 and 10 illustrate
experimental proofs with cubes of specific gravities 1-5 and
4 times that of the fluid.

Granted that the pressure on the base of a cube or vertical
parallelopiped of liquid is equal to its weight, by following
a similar method of imagining portions of the liquid to become
solidified or to be cut out, Stevinus shows that the pressure
on the base of a vessel is independent of its form, and proves
the laws of pressure of communicating vessels and tubes.

Perusal of Stevinus’ notes indicates that he had a hazy
idea of the principle of virtual displacements. He had ob-
served that what a simple machine gains in force it loses in
distance. In his discussion of pulleys he notes that, ‘Ut
spatium agentis ad spatium patientis, sic polentia patientis
ad potentiam agentis’” (Vol. IV, L. 3) as the space passed
over by the force is to the space passed over by the resistance
so is the resisting force to applied force. Here he strikes close
to the principle of work, namely that in a perfect machine the
product of the force and distance traversed is equal to the
resistance times the distance through which it is overcome.

We have here in Stevinus’ book the germ of the idea of
virtual displacements. That is, if in a simple machine we
consider any virtual or possible displacement of the agent,
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the resistance moves over a corresponding displacement so
that in every case the product of the acting force and its dis-
placement is equal to the resisting force times its displace-
ment.

Stevinus utilized this idea in a narrow limited way, applying
it in the calculations on the simple machines but not attaining
to the idea of work, as the measure of force acting through
distance, nor to the idea of the balance of positive and negative
work in a machine. His chief contributions are the statical
principle of the triangle of forces, the founding of Graphic
Statics, and the exposition of the conditions of buoyancy and
liquid pressure. While he was developing Statics in these
directions, his young contemporary Galileo had been experi-
menting with moving bodies and was laying the foundations
of Dynamics.
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5. THE CONTRIBUTION OF GALILEO GALILEI
(1564-1642).

Taking up now the work of Galileo we find that he caused
a revolution in mental attitude toward the study of natural
phenomena. The Aristotelian Natural Philosophy had for
centuries been regarded as an infallible authority in the schools.
In 1543, Petrus Ramus (1515-1572), a scholar of the University
of Paris, was forbidden by an edict of Francis I, under pain
of punishment, to teach or write against it. To Galileo, a
young medical student of noble Florentine family, who had
come to disbelieve in the dogmas of the old philosophy belongs
in part the glory of emancipating men's mind from this author-
ity of antiquity.

Galileo appealed from apriori axioms, presuppositions and
syllogistic deductions to an investigation of the actual facts.
The teachings of Aristotle had been received, ‘‘ipse dixit,”
up to this time, in spite of the fact that some of them were
contradicted by daily experience, and in spite of the fact that
easy, simple experiments proved them wrong.

To quote but a few of these Aristotelian notions which
were blindly accepted and believed—

1. Substances were divided into ‘‘corruptible” and “in-
corruptible,” chief among the latter were the heavenly bodies.

2. Bodies were classified as absolute heavy bodies and ab-
solute light bodies and “sought their places’; the light bodies
belonging up and the heavy bodies down.

3. Motions were classified as ‘‘natural motions’ and ‘‘violent
motions.”’

4. Large bodies were believed to fall quicker than small
ones, or the velocity of falling bodies was believed to be in
proportion to their weight.

Galileo vigorously attacked this Aristotelian philosophy;
he appealed from authority to experiment, to nature. He
boldly contradicted the teachings of Aristotle, which had been
accepted and believed for over a thousand years. By direct
experiment, as for example, by dropping weights from the
leaning tower of Pisa he proved that Aristotle was wrong.
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The schoolmen of the time did not readily relinquish their
errors and carried on long and bitter controversies with him
so that he was obliged to leave Pisa for Padua.

His keenness of perception is well illustrated by the story
of the discovery of the isochronism of the pendulum through
observations on the gradually decreasing swing of a hanging
lamp in Pisa Cathedral. He counted his pulse as the lamp
oscillated over a smaller and smaller arc and found that the
number remained constant, thus verifying his suspicion of
isochronism. He is also credited with the first determination
of the relation between the time and length of a pendulum
and the application of it in a metronome for the use of physi-
cians. A scheme for a pendulum clock, which he never realized,
is found among his manuscripts.

Galileo seems to have been the first to set forth clearly:

1. The idea of force as a mechanical agent.

2. The conception of mechanical invariability of cause and
effect.

3. The principle of the independence of action of simul-
taneous forces. ,

The rigorous mechanical explanation of motion dates from
Galileo. He studied carefully the motions of falling bodies
and projectiles and found their laws setting forth:

1. All bodies fall from the same height in equal times.

2. In falling the final velocities are proportional to the times.

3. The spaces fallen through are proportional to the squares
of the times.

He came to these laws experimentally by collecting data
on the time of descent, the final velocities and the distances
traversed, as in the following table, g being a constant.

Time. Velocity. Space.
I. 1g 1X1g/2
2. 2g 2X2g/[2
3. 38 3X3g/2
4. 48 4X4g/2
: tg t X tgl2

The experiment on grooved planes by which these results
were obtained are now well known. An inspection of the
table shows at once that the numbers follow the simple law,
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v varies as gl,

which "expresses the relation between the first and second
columns,
s varies as gft/2,

which expresses the relation between column one and column
three, while
s varies as v?/2g,

is the relation of the second and third columns.

The first two of these expressions, vxgt and sxgf?/2 were
used by Galileo in his development of dynamics to the neglect
of sx?/2g. Later, Huygens took up the expression sxv?/2g,
and made important advances based upon it.

It was observed in the discussions of moving bodies after
Galileo’s time that a moving body had a certain “‘efficacy”—
that there was inherent in a moving body, something that cor-
responds to force. Later philosophers debated strenuously as to
whether this efficacy was proportional to the velocity or to the
velocity squared. But it will be perceived from an inspection of
the above expressions that a body with double the velocity can
overcome a given force through double the time, but through
four times the distance. With respect to time, therefore, its
efficacy is proportional to velocity; but with respect to dis-
tance, or space traversed, its efficacy is proportional to the
velocity squared.

Before the time of Galileo, force was treated in mechanics
only as pressure; after his time the ideals of force, velocity
and acceleration as we know them to-day came into use. That
either acceleration of motion or change of shape is the imme-
diate effect of force is the fact that Galileo perceived and set
down as a fundamental and invariable rule of dynamics.

He determines force by the change of velocity, or the ac-
celeration it produces, and he may be said to havediscovered
the law of inertia indirectly. At all events, his conception of
dynamics might be expressed by the formula F = m.a, though
he did not so express it because his conception of mass was
not clear. He made no use of the expression S = v?/2g, which
led Huygens to his conception of energy, later formulated as
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F.S = mv?/2. His failure to do so appears to be due to the
same cause—he did not fully grasp the modern conception of
mass.

In Galileo's ‘“Della Scienza Mecanica” (1655), Tom. I, p.
265, appears the first clear presentation of the principle of
virtual velocities. This idea is now common property in sev-
eral forms, one of which is the familiar dictum, “‘what is gained
in speed is lost in power.” It developed slowly into the law
of conservation.

In completer form it is now stated as follows: If a material
system, acted on by any forces whatever, be in equilibrium;
and we conceive the system to experience, consistently with
its geometrical relations, any indefinitely small arbitrary dis-
placement; the sum of the forces multiplied each of them by
the resolved part parallel to its direction, of the space described
by its point of application, will be equal to zero; this resolved
part being considered positive when it lies in the direction of
its corresponding force, and negative when in an opposite
direction.

Though Guido Ubaldi in his ‘“Mechanicorum Liber’’ called
attention to the idea of virtual displacement and moments in
connection with the lever, and though Stevinus makes mention
of it, Galileo appears to have been the first to apply these
ideas to all the simple machines. The term ‘“moment” of a
force seems to have meant to Galileo, the effort that tended
to set a machine in motion. Therefore, in order that a
machine should remain at rest or in equilibrium under the
action of two forces it is necessary that their moments balance.
He showed that the moments of a force are always proportional
to the force times its virtual velocity.

In his ‘“Mechanica, sive de Motu,” Wallis uses the term
moment in this same sense and bases his statics on the equality
of moments as a fundamental principle.

This idea is most prolific and many later writers used it in
varied form as the basis of their formal presentation of me-
chanics. Descartes for example in Lettre 73, Tom. 1, ‘“de
Mechanica Tractatus” (1657), bases his whole treatment of
Statics on a single principle which is essentially Galileo’s idea
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of virtual velocities. His conception of it is, that it requires
exactly the same energy to raise a weight P through an altitude
A, as a weight Q through an altitude B, provided that P is to
Q as B is to A. It follows from this that any two weights
attached to a machine will be in equilibrium when they are
disposed in such a way that the small paths they can simul-
taneously describe are reciprocally as their weights.

The same idea was presented in another aspect by Torricelli
in “De Motu Gravium Naturaliter descendentium” (1644).
His conception was, that when any two weights rigidly con-
nected together, are so placed that the center of gravity is in
the lowest position which it can assume consistently with the
geometrical conditions, they will be in equilibrium. Torri-
celli’s principle was finally presented in the form,—any system
of heavy bodies will be in equilibrium when their center of
gravity is in its lowest or highest position. His presentation
was based on Galileo’s conception of virtual velocities.

Finally a century later, it was stated about as we have it
to-day in general terms by John Bernoulli, in his letter to Varig-
non dated, Bile, Jan. 26, 1717, published in ‘“‘Nouvelle Mecan-
ique,” Tom. II, sect. 9.

These ideas gave a new trend to the development of mechan-
ics. In 1743, D’Alembert built the first Treatise on Dynamics
on this principle. Had this idea of virtual displacements been
clearly perceived and appreciated by Archimedes, mechanics as
a science would have developed much more rapidly. This
principle is of such universal application that a separate rule
. is no longer necessary for each of the simple machines; it
suffices for them all. :

To Bernoulli belongs the credit of showing that the prin-
ciple of virtual displacements may be made the basis of a
whole theory of equilibrium, but the idea originated with
Galileo. He also applied the principle in his ‘‘Discourse on
Floating Bodies’’ demonstrating by it the theory of buoyancy.
In spite of these expositions some of Galileo’s opponents still
held blindly to the Aristotelian theory that the breadth or
form of a body was the factor that determined whether it
sank or floated.
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In general, Galileo prepared and familiarized men’s minds
with the correct notion of interdependence of force and motion
thus clearing the way for the generalizations of Newton's Laws
of Motion. Nowhere does he state these laws explicitly, but
their perception is involved in the solution of some of the
dynamical problems in his books. He even gives two of the
laws of motion in an incomplete way. The first law of Newton
is a generalization of Galileo’s theory of uniform motion. The
second law, that change of motion is due to force and is pro-
portional to the force that makes the change, and takes place -
in the direction of the force, is a generalization of Galileo’s
theory of projectile motion.

Before this time, it was commonly believed that a body
could not be affected by more than one force at a time, and
it was even held that a ball shot horizontally, moved in a
straight line until the force was spent and then fell vertically
to the earth. Galileo demonstrated in his fourth Dialogue
that the path of a projectile must be a parabola, the resultant
of a uniform transverse motion and a uniformly accelerated
vertical motion.

He, however, did not attain toa clear discrimination between
mass and weight, and he failed to see that acceleration might
be made a means of measuring the magnitude of the force of
gravity. There is no statement of the third law of motion,
in reference to action and reaction, anywhere in Galileo’s work,
though there is a suggestion of the idea of it in some of his
statements in the ‘‘Della Scienza Mecanica.”

Galileo not only founded Dynamics but he made perfectly
clear the fact that force may produce two effects upon bodies,
change their motion, that is give them acceleration, or it may
change their form or shape, that is deform them. In his study
of the first effect he developed the dynamical laws of falling
bodies, of projectiles and of the pendulum, in the later he
founded the study of the resistance of materials. His crude
investigations as to the internal structure of matter and his
theory of its deformation and resistance in the form of col-
umns, posts, beams and cantilevers is set forth in his book
“Discorsi e dimostrazioni matematiche intorno a due nuove




58 THE SCIENCE OF MECHANICS.

scienze,” published in Leyden, 1638. This work attracted
little or no attention at the time but it is one of Galileo’s most
substantial contributions. Although he wrote some sixteen
volumes in all, this work and his ‘“‘Discorso interno alle cose
che stanno in sur 'acqua” in which he proves the static law
of fluid pressure, contain nearly all his research in mechanics.

After Galileo’s time we no longer find such naive and obscure
phraseology as, ‘‘motions are of two orders, natural and vio-
lent.”” Henceforth the notions of the Aristotelians became
untenable. Men soon came to recognize that all bodies, even
the heavenly bodies, were probably of one kind. Force came
to be understood as that which causes acceleration in a body,
or deformation in a body. It became apparent that in-
stantaneous and continuous forces produce unlike effects, and
that weight is a continuous force drawing bodies toward the
earth. A little later the great Newton explained how it was
that all bodies fall with equal velocities from the same height,
barring the unequal resistance of the air.

When these things had been pointed out and verified by
experiment, the foundation of the study of moving bodies was
laid and the progress of Dynamics was sure and steady.
Newton’s generalizations followed logically upon Galileo’s dis-
cussions of motion, and D’Alembert’s Treatise on Dynamics
came as an expansion of these ideas. It is no exaggeration
to say that to Galileo we owe modern mechanics. Lagrange
in his “Mecanique Analytique’ testifies to Galileo’s greatness
in these words:

“Dynamics is the science of forces accelerating or retarding,
and of the various movements which these forces can produce.
This science is entirely due to moderns, and Galileo is the one
who laid its foundations. Before him philosophers considered
the forces which act on bodies in a state of equilibrium only;
and although they could only attribute in a vague way the
acceleration of heavy bodies, and the curvilinear movements
of projectiles, to the constant action of gravity, nobody had
yet succeeded in determining the laws of these daily phe-
nomena on the basis of a cause so simple. Galileo made the
first important steps, and thereby opened a way, new and
immense, to the advance of mechanics as a Science.
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“These discoveries did not bring to him while living as
much celebrity as those which he had made in the heavens;
but to-day his work in mechanics forms the most solid and
most real part of the glory of this great man. The discovery
of Jupiter’s satellites, of the phases of Venus, of the Sun-spots,
etc., required only a telescope and assiduity; but it required
an extraordinary genius to unravel the laws of nature in
phenomena which one has always under the eye, but the
explanation of which, nevertheless, had always baffled the
researches of philosophers.”



PART III.
THE MODERN PERIOD, 1500 TO 1900.

We no longer believe with the cave-men that thunder is
the roar of an angry god, nor with Luther that a stone thrown
into a pond will cause a dreadful storm because of the wrath
of devils kept in prison there; but we still believe with them
that wood floats, and we have clear ideas of the conditions
of its buoyancy. The characteristics of the modern period
are its empiricism, the great and increasing part played by
natural knowledge, and a strong conviction of the importance
of sense impressions as a source of knowledge. Added to this
we observe an enthusiasm for research and a determination
to expose error regardless of controversy or consequences.

Since 1700 the whole outlook upon the universe has changed.
Science has routéd the old theology, and altered the habits
of life of millions by its influence in the trades and industries.
Though there is still nothing more mysterious than force, the
imps of that weird ante-world of Science that lurked in every
zephyr and grinned from every tree and dark nook are now
no more. Quite apart from the comforts of life that we owe
to mechanics, we are indebted to the science for the peace
of mind which a rational Natural Philosophy has brought us.

Since Galileo’s time mechanics has been characterized by
an attitude of direct experimental inquiry which has sought
to test and extend the conceptions already formed. The
science has grown by slow expansion and accretion, and it has
often been some time before new conceptions have become
susceptible of precise statement. It seems as though an idea
must be considered and turned over by many minds before it
can be clearly set forth. Even the great masters have not
always presented the principles which they have contributed,
in the form in which we now state them.

Thus it is, that a clear statement of the ideas developed

in this later period is not attained to, until a number of
60
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workers have cultivated the field, and until each has developed
separately facts, which when correlated and worked over, by
a master mind, give us an illuminating view of the whole
subject.

So, in passing from the work of Galileo to that of the next
great master Christian Huygens (1629-1696), we pass over
a number of men whose work was one of preparation, ex-
tension and amplification, rather than of new contribution.
Such were these workers whose activities can be but briefly
referred to in this outline of the history of mechanics.

Johann Kepler, 1571-1630, of Wiirtemburg, Germany, who
in “Astronomia Nova,” 1609, and ‘‘Harmonice Mundi,” 1619,
set forth the three laws of planetary motion, viz:

(1). Each planet revolves in an elliptic orbit having the
sun as its focus; (2) the straight line joining the sun and
planet passes over equal areas in equal times; (3) the square
of the time of revolution of each planet is proportional to
the cube of its mean distance from the sun. Here we have
the statement that the solar system is disposed according to
mathematical and mechanical law.

Francis Bacon (1561-1626), author of Novum Organum
(1620), who declared for science on the ground that ‘‘knowledge
is power” and who advocated an experimental study of the
world with a view to improving human conditions.

Marcus Marci, 1595-1667, published at Prague in 1639
“De Proportione Motus’’ in which he gives correct elementary
notions of impact.

René Descartes, 15906-1650, published at Amsterdam in
1644 his “Principia Philosophiz’ in which we have the first
notable modern endeavor to formulate a system of mechanics
from the universal point of view. His scheme is objectionable,
but he called attention to the problem of a universal mechanical
philosophy.

Gilles Personne de Roberval, 1602-1675, published in the
Memoirs of the French academy, 1668, a notable paper ‘‘Sur
la Composition de Movements.”
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Otto Von Guericke, 1602-1686, of Magdeburg, Germany, an
engineer in the army of Gustavus Adolphus published ‘“De
Vacuo Spatio,” 1663, and “Experimenta Nova,” 1672, giving
an account of his invention of the air-pump, 1650, and various
experiments performed with it.

Pierre de Fermat, 1601-1665, of Montauban, France, pub-
lished between 1670 and 1680 a series of monographs on
maxima and minima, tangents, curves, centers of gravity
and copies of his correspondence with Descartes, Huygens
and Pascal on mechanical problems, under the title ‘‘Opera
Mathematica,” which cleared the way for later advance.

Evangelista Torricelli, 1608-1647, constructed the first
mercurial barometer about 1643 and applied it to the measure-
ment of variations in atmospheric pressure.

Edme Mariotte, c. 1620-1684, who in his “Traité du Mouve-
ment des Eaux,’’ 1686, published the first treatise on hydraulics
and advocated and developed experimental research on gravi-
tation, hydraulics and pneumatics.

Robert Boyle, 1627-1691, who first formulated what is now
known as ‘“Boyle’s Law,”” viz: that when a gas is at a constant
temperature, the product of the pressure and volume remains
constant, howsoever one of these be varied.

Blaise Pascal, 1623-1662, who published his studies on the
question of fluid pressure in “Recit de la grande experience de
I'equilibre des liquers’ (1648), and ‘‘Traite de I'equilibre des
liquers et de la presanteur de la masse de I'air”’ (1662). One
of his conclusions, commonly known as Pascal’s principle is,
that “‘external pressure is transmitted by fluids in all directions
without change in the intensity.”

All of these investigators either set forth an idea of some
importance or simplified and extended the presentation of
accepted ideas. Later investigators were familiar with their
work and mounting upon it attained to the higher conceptions
of the science. The work of Kepler in astronomy was partic-
ularly useful to Newton in attaining to his grand generalization
of the law of universal gravitation. The work of Descartes
besides presenting a highly useful method of combined alge-
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braic and geometric analysis, suggested the idea of Conserva-
tion, while the branches of hydrostatics and pneumatics
could not have progressed far without the researches of
Guericke, Torricelli, Mariotte, Pascal and Boyle. Their
work was one of investigation, experiment and study in rather
narrow fields. It was a work of preparation upon which their
successors built grandly.

1. THE CONTRIBUTION OF CHRISTIAN HUYGENS
(1629-1696).

Most of the great masters of mechanics have left a record
of practical invention as well as of theoretical advance in the
science. Huygens is remembered as the man who first made
a good clock. Born at The Hague, and educated at Leyden
and Breda, where he studied law and mathematics, he won
fame in astronomy as well as in mechanics. In 1665 he dis-
covered the rings of Saturn with a telescope which he had con-
structed. We are concerned however only with his contri-
bution to mechanics. He carried forward Dynamics by de-
veloping precise statements of accelerated motion and solving
the first problems in the dynamics of several masses. Galileo
had always restricted his speculations to a single body.

Huygens' contributions are set forth in his publications;—
“A summary account of the laws of motion,” Philosophical
Transactions, 1669, ‘“‘Horologium Oscillatorium,” Paris, 1673,
and “Opuscula Posthuma,” Leyden, 1703. The complete
mathematical theory of the pendulum and his invention of
the escapement is completely set forth in the ‘“Horologium”
(1673), which is a work worthy to rank with Newton’s Prin-
cipia. He was the first to determine the acceleration of gravity
by the pendulum, and also the first to enunciate the formula
of centrifugal force, F=m?/r; his discovery of the laws of
collision of elastic bodies was announced simultaneously
with that of Wallis and Wren.

Huygens’ great work was a complete exhaustive theory of
the pendulum and the solution of the problem of center of
oscillation. He considered the pendulum to be made of
particles, and originated the idea of the dynamics of more
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than one mass or particle. He employed the method of ag-
gregating the motions of particles, but though he used symbols
for “‘moment of inertia’’ and ‘‘statical moment,” he did not
define and assign these names. Euler appears to be responsible
for the term moment of inertia (Zm.r?). This method, now
so general in its application in the mechanics of solids and
liquids and in daily use by engineers and physicists, is one of
the great inventions of Huygens. It gave to the science of
mechanics a new trend, and when the invention of the calculus
made the process of summation easy, this method brought a
wealth of progress in dynamics and hydrodynamics.

In the dispute as to whether the so-called ‘“‘efficacy’’ of a
moving body is proportional to the first or second power of
the velocity, Huygens, who had originated the later idea,
maintained it strenuously. The dispute was really one of
terms. The “efficacy” of a moving body varies as its velocity
in reference to the time and as the square of the velocity in
reference to the space passed over. Reference to the time
leads to what Descartes called the ‘‘quantity of motion”
(momentum), m.v. This makes the notion of force the primary
concept. Reference to the distance passed over gives the
expression, m.1?, which makes work or energy the primary
concept. The first view is expressed by F.t=m.p as the fun-
damental equation of mechanics, the second gives: F.s=m.v®
as the fundamental equation.

In 1847, Belanger proposed the name impulse for the ex-

pression F.f, which was later adopted and popularized by

Clerk Maxwell in his writing on matter and motion.
Leibnitz gave the name ‘‘vis viva” to the expression m.1?
in a memoir published in the ‘‘Acta Eruditorum,” 1695, en-
titled ‘‘Specimen dynamicum pro admirandis naturz legibus
circa corporum vires et mutuas actiones detengendis et ad
suas causas revocandis,” or ‘“A dynamic illustration of the
astonishing laws of the power of bodies in their reciprocal
action revealed and traced back to their causes.” He in-
tended, as the name visa viva suggest, to indicate a measure
of the force of a body in actual motion. The term ‘vis
motrix” was also used interchangeably with vis viva to dis-
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tinguish the moving force from statical pressure which was
called ‘‘vis mortua.”

The difference of opinion really hinged on whether force or
energy is to be considered the fundamental notion. Huygens
and his party maintained the latter position, while Descartes
and later Newton accepted force, mass and momentum as
fundamental notions. This dispute went on for fifty years
until D’Alembert in 1740 in his “Dynamique” showed it.to
be a misunderstanding as to terms, not facts. }

Later Coriolis (1792-1843) introduced the more common
notation of Y4m.v? for vis viva or kinetic energy, and Poncelet
adopted the same plan, but the conception of energy we owe
then to Huygens.

Another of his important achievements was the solution
of the problem of center of oscillation. This cannot be done
without recourse to the new method which he used so suc-
cessfully, namely the method of the dynamics of particles.
It is a matter of every-day observation that a long pendulum
oscillates more slowly than a shorter one. Therefore if we
consider the component particles of a compound pendulum
as so many simple pendulums, it is manifest that owing to
their connections they all vibrate with only one determinate
period of oscillation. There must exist a simple pendulum
that has the same time of oscillation as the compound pendulum.
Its length measured off on the compound pendulum gives us
the particle or point that preserves the same period of oscil-
lation asif it were detached and vibrating as a simple pendulum.
This point is the center of oscillation.

The idea which Huygens applied in the solution of this prob-
lem is, that in whatever manner the particles of the pendulum
may by their mutual interaction modify each other’s motions,
in every case the velocities acquired in the descent of the pen-
dulum will be such only that the center gravity of the particles,
whether still in connection or with their connections dissolved,
is able to rise to the same height as that from which it fell.

Huygens’ proof in brief is:—Let OK be a linear pendulum
made up of a large number of masses set in a line OK. If it
be set free it will swing through B to OK’ where KX =XK"'.

5
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The center of gravity will ascend just as high on the second
side as it fell on the first. Now if at OX we should suddenly
release the individual masses from their connections the masses
could by virtue of the velocities impressed upon them by their
connections, only attain the same height with respect to center

of gravity. If the free outward-swinging masses be arrested
at the greatest heights they attain, the shorter pendulums
will be found below the line OK’, the longer ones will have
passed beyond it, but the center of gravity of the system will
be found on OK” in its former position.

The enforced velocities are proportional to the distances
from the axis; therefore, one being given all are determined,
and the height of ascent of the center of gravity may be found.
Conversely the velocity of any particle is determined by the
known height of the center of gravity. So if we know in a
pendulum the velocity corresponding to a given distance of
descent we know its motion is defined.}

If now on a compound linear pendulum we cut off the portion
L equal to /, and if the pendulum move from its position of
greatest displacement to the position of equilibrium, the point
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at the distance / from the axis falls through the distance K.
The masses m, m’, m’’ at the distances 7, 7, '/, will fall the
distances 7k, 'k, "’k ... and the distance of descent of the
center of gravity will be:
mrk+m'v'k+m’'r"k+---  Zmr
m+m'+m'’'+ ... =kzm
If now, the point at the distance / acquires on passing through
the point of Equilibrium a velocity v, the height of ascent
assuming the dissolution of connections will be v?/2g and the
heights of the other particles will be (rv)?/2g, (r'v)%/2g, (r''v)*/2g
. and the height of ascent of the center of gravity of the
liberated masses will be:

L) (s
m

m''(y''v)?

2g +m 2g + 2g +.”_v'2mr’
m—+m'+m'’ T 2gzm’
and
Zmr _ v*Zmr? @
Zm  2gZm’

But, to find the length of the simple pendulum that has the
same period of oscillation as the compound pendulum, it is
necessary that the same relation must exist between the dis-
tance of its descent and its velocity as in the case of unimpeded
fall. If y is the length of this pendulum, &y is the distance
of its descent and vy its velocity. Therefore,

v _
2g ky
or,
v’
. ;—g— =k. )
Multiplying equation (a) by equation (b) we get
_ Zmr?
Y= Zmr

Here we note Huygens’ recognition of work as the deter
minative of velocity, and we see that he measures it in terms
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of the second power of the velocity, 4. e., V2. This work he
called thé vis viva of any system of masses such as m, m’, m”’,
having the velocities v, v/, v’/ as expressed in the formula.

mo? mivn + mnv//!
2 2 2

+--.

Huygens thus clearly indicated that the center of gravity is
conserved or cannot rise higher than it falls and in establishing
it he sets forth what he calls the principle of vis viva, or the
rule that the work or energy is proportional to the mass times
the velocity squared. The equation for work and energy
F.s=m.? is really an algebraic statement of Newton's second
law of motion and is fundamental in dynamics. Lagrange
based his work on it. .

The writers before Huygens did not have a clear conception
of mass as distinguished from weight nor was he perfectly
clear on this point, but his endeavors to explain the error of
the pendulum clock of the Jean Richer expedition to Cayenne
(1671), by the greater centrifugal force at the equator, show
that he had the idea of mass as somehow different from
weight.

Huygens may then be said to have contributed the mechan-
ical principles symbolized by those type-expressions and their
simple derivatives,

(1) Zmr?,
(2) F=mv/r,
3 F.sxXm.y2

Thus Huygens originated the mathematical method by
which the ideas of Galileo were applied to a variety of problems.
The development and amplification of these contributions
by their successors brought a wealth of progress. Huygens'
" general way of attacking problems of masses under the action
of forces by the method of the dynamics of a particle is in
almost daily use by the physicist and the engineer. Like
some of the contributions of Archimedes, the contributions
of this great master Huygens have an eternal value.




THE MODERN PERIOD. 69

REFERENCES—HUYGENS.

Euvres completes de Christian Huygens, 6 vols. (1888 La Haye).

Christiani Huygenii de circuli magnitude inventa.

Christiani Huygenii Zuilichemii Opera Reliqua (Amsterdam, 1728).

Christiani Huygenii a Zulichem Opera Varia, 1724.

Christiani Huygenii Zulichemii Opera Mechanica; Geometrica, Astro-
nomica et miscellanea, 1751.

Christiani Huygenii Kosmotheros, 1698.

2. THE CONTRIBUTION OF SIR Isaac NEwTON
(1642-1727).

The year of Galileo’s death was the year of Newton's birth.
With the passing of the great Italian scientist, a worthy
successor, the greatest of all experimental philosophers, was
born in England. He established order in the domain of
Science and set forth the great laws by and through which
mechanics has been able to grow and prosper.

Newton's contribution may be considered under two head-
ings: the development of dynamics, and the applications
of dynamics to the great problem of planetary motions. His
work is a logical sequence to that of Stevinus, Galileo, Keplér
and Huygens. The “Philosophiz Naturalis Principia Mathe-
matica’ of Newton (1687), commonly called the Principia,
is one of the most extraordinary products of human genius,
not only in itself but in the revolution which it effected in
theoretical and practical mechanics. In it we find much more
than a re-statement of the general principles of equilibrium,
center of gravity and mechanical powers which were common
property at this time. It is a body of doctrine based upon the
contributions of all preceding inquirers reduced to the lowest
terms. ‘

The whole body of doctrine on motion of projectiles which
had been developed by Galileo, Huygens and others, is re-
duced to the concise, comprehensive “axioms” or laws of
motion. We have then in the very opening pages of the
Principia, a clarification, precipitation and crystallization
of all previous contributions. This of itself was a great gain,
but it was done by Newton as preliminary to further advance,
preliminary to dynamical discussions which in their grand
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scope, sweep from the earth to the planets and beyond to
the utmost limits of the universe.

The ‘“‘composition of forces” he indicates as a corollary to
the laws of motion. This was a new idea. In Newton's
point of view if a body in space is acted upon by an impulsive
force it moves in a straight line. If at the same time, another
force acts upon it at an angle inclined to the first force, the
body takes an intermediate course called a ‘“resultant’” path
determined by drawing the diagonal of the parallelogram, the
two sides of which represent the magnitude of the two forces.

The truth of this principle is made to depend upon the laws
of motion. From being a mere statement of experience, as
it was with Galileo and Stevinus the parallelogram of forces
is correlated to the fundamental laws of motion and deduced
as following at once from them. What Galileo and Stevinus
said in pages, Newton said in a paragraph. The principle
of the parallelogram of forces is not merely stated, it is deduced
from three fundamental laws of motion.

On the same axioms Newton based the whole theory of
cehtral forces. He supposes a body to be acted upon by
two forces as above, but supposes that the second force acts
on it in a new direction in succeeding instants. Then the
successive diagonals of the parallelograms of the forces will
be successive sides of a polygonal figure and the lines of the
deflecting forces will cut one another within the figure. If
they meet in a point forming a series of triangles of equal
area it is easy to see that the path of the body is the same as
though a single force acted upon the body to produce motion
forever in a straight line and a second force acted upon it to
deflect it continually to a point within the polygon. The limit
of such a path, as the polygonal sides become smaller, is a
curve.

In this manner centrifugal forces and curvilinear motion
are demonstrated and their laws set forth. Thus a whole
system of dynamics is developed from the geometrical and
mathematical relations of diagrams of the parallelogram of
forces. Newton founded the correct theory of motion about a
center and the whole system of dynamics involved with it.
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He set forth the principle of equal areas described in equal
times as the test of a central force and gave the mathematical
proof.

A body exposed to the action of a central force and given
an impulse in a straight line will neither fall toward the central
force nor proceed in a straight line, but will take an inter-
mediate diagonal or curvilinear path. Newton brought to
bear on this problem all the geometrical and mathematical
knowledge of his day, as well as his own fluxional calculus,
and established the theorem that a body projected in a straight
line and subjected to the action of a central force will revolve
in some one of the conic sections if the force vary inversely
as the square of the distance from the focus,—which of the
conic sections, he shows, depends on the ratio of the forces.
This dynamical theorem is the starting point of Newton's
system of celestial mechanics.

A variety of consequences follows mathematically from this
theorem. The dynamics of elliptic orbits is established at
once upon a sound basis and the interrelation of the functions
of motion follow inevitably.

He also took up the abstract theory of the attractions which
portions of matter may be conceived to exert upon each other,
showing that if the particles be attracted according to the
law of inverse square of the distance and if they be aggregated
into spherical masses these spheres will themselves attract
accordingly to the same law, and that the attraction would be
directed to the centers of the spheres and be proportional to
the matter contained in them, divided by the square of the
distance between the centers.

From this, to the law of universal gravitation seems but a
step. But though Newton is said to have entertained this
theory as early as 1666, it was not till 1672, when the data of
Picard on the figure of the earth were obtained, that Newton
justified it and became convinced of its truth. He first gave
it out in his lectures in 1684. It was published latter in his
treatise “De Motu” and in the “Principia.”” In Book III,
Proposition 4 of the latter, he calculates the acceleration of
the moon toward the earth and shows that starting from
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rest with this acceleration, it would fall towards the earth
16 feet in the first minute and that at the earth’s surface 60 times
nearer, the same distance would here be fallen through in
one second which was almost exactly the value obtained by
Huygens in his experiments.

The action of force without a medium to transmit it, appears
to have troubled Newton, and this is not surprising when one
considers that the pull of the sun on the earth is equal to a
force sufficient to break a million million round steel rods
each twenty-five feet in diameter.

The law of universal gravitation is the basic principle of
Newton's applications of his dynamics to planetary motions;
when he had achieved it, all the mechanism of the universe
lay like an open book before him. It was now possible to
apply mathematical analysis with absolute precision to the
problems of astronomy.

At once many new conceptions came into view. Neither
Galileo nor Huygens had clearly distinguished mass from
weight, but now it followed at once, that the same body must
have a different weight at different places on the surface of
the earth, and might even be conceived under certain condi-
tions to have no weight. We arrive now for the first time at
a clear idea of mass. The idea of force as first propounded by
Galileo was now seen to be of universal application. Finally
the law of action and reaction was clearly stated and set forth.
These are most illuminating conceptions.

It began to be evident after this, that gravity was a force
measurable like any force in terms of mass and acceleration,
though it was some time before the principle was stated in
the concise algebraic form,

F=m.a,
W=m.g,
Newton’s concept of mass is in fact the corner-stone of his
dynamics.
At the beginning of the Principia we find a series of funda-

mental conceptions given in a series of definitions. The final
one refers to mass, as follows:
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Definition I. (As to mass.) ‘‘The quantity of any matter
is the measure of it by its density and volume conjointly.
This quantity is what I shall understand by mass of a body in
the discussion below. It is ascertainable from the weight of
the body for I have found by pendulum experiments of high
precision, that the mass of a body is proportional to its weight,
as will hereafter be shown.

Definition II. ‘‘Quantity of Motion” is the measure of
it by its velocity and quantity of matter conjointly.

Definition III. The resident force ‘“‘vis insita,” 4. e.,
inertia of matter is a power of resisting, by which every body,
so far asin it lies, persists in its state of rest or of motion in a
straight line.

Definition IV. ‘‘An impressed force is any action which
changes or tends to change the state of rest or of uniform
motion in a straight line.”” This defines force as the cause
of acceleration or tendency to acceleration of a body.

The laws of motion as Newton enunciates them are:

Law I. Every body persists in its state of rest or of uni-
form motion in a straight line, except in so far as it is com-
pelled to change that state by impressed forces.

Law II. Change of motion (4. e., of momentum) is pro-
portional to the moving force impressed, and takes place in
the direction of the straight line in which such is impressed.

Law III. “Reaction is always equal and opposite to
action, that is to say the actions of two bodies upon each
other are always equal and directly opposite.”

To these are added a number of corollaries. The first
and second relate to the principle of the parallelogram of
forces, the others are logical consequences of the laws. Then
follow the propositions in two books, the first treating of the
motion of bodies in non-resisting media and the second in
resisting media.

The work of Newton may be summed up in his definitions
and laws. The great result of his work was the clear concept
of mass and the conception that bodies mutually cause ac-
celeration in each other dependent upon space and material
circumstances.
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Mach! sums the matter up by saying that in reality only
one great fact was established, viz: that ‘‘different pairs of
bodies determine independently of each other, and mutually,
in themselves, pairs of accelerations whose terms exhibit a
constant ratio, the criterion and characteristic of each pair.”

Newton did not state his results in algebraic terms. He
developed the deductions in the ‘‘Principia’ geometrically
though there seems to be no doubt but that many of his con-
clusions were arrived at, and perhaps first proven by his
method of fluxions or fluxional calculus.

Had Newton stated his principles algebraically, the formula
for force, F=m.a would probably have been expressed by
him as F=m./t or F.t=m.y. Acceleration he would have
expressed as the time rate of change of velocity v/¢, and forces
he would have measured by their momentum, mXv. Up to
Newton’s time such formal presentation of the Science of
Mechanics as there was, had been made on the geometrical
method and Newton following in the steps of Archimedes,
Stevinus and Galileo, used this method in his ‘Principia,”
representing forces by lines by the graphical method.

The fact that acceleration may also be expressed as a space
rate of velocity squared, or analytically by the formula
a=v?/2s is not apparent geometrically. Substitution in the
algebraic formula F=m.a gives F.s=m.p? 2, or the expression
for work and energy which is not considered in Newton’s
geometrical analysis, and which was the point of view from
which Descartes, Huygens and Leibnitz approached the
subject.

This difference in point of view gave rise to the long con-
troversy already mentioned between the English disciples of
Newton and the continental school or the adherents of Huygens
and Leibnitz. The so-called Galileo-Newtonian school main-
taining that momentum (F.t=m.v) was the only correct
measure of force and the Leibnitzian-Huygenian school main-
tained with equal vigor that force was a function of the ‘‘vis-

m-v?
viva'’ or energy (F-s = T)

1Dr. E. Mach, Science of Mechanics.




THE MODERN PERIOD. 75

For fifty years mechanics developed along these two sep-
arate paths. The English investigators long followed the
formal geometrical presentation of Newton, and the French,
Germans and Swiss developed their mechanics on the work of
Huygens, using the calculus of Leibnitz. It was not till
mathematical analysis came to be applied to mechanics and an
analytical scheme was developed by D’Alembert in his ‘‘Traite
de Dynamique’’ (1743) that they were reconciled, and brought
into accord.

It was then seen that both can be derived from Newton's
fundamental equation F=m.a. If the acceleration is meas-
ured as a time rate of velocity, we get a=v/t and if the accel-
eration is measured as a space rate of the velocity squared
we get a=v*/s, which are of the same dimensions.

Newton made very clear the conception that the effect
of a force is to change the size or shape of a body or to change
its velocity, that is to give it acceleration. For studying the
flux or flowing relations of quantities he devised his ‘“Method
of Fluxions” now commonly known as the calculus. The
basic idea of his Fluxions is this. He considers a “fluent” as
a quantity that gradually and indefinitely increases or flows.
The velocities at which such fluents move he defines as fluxions
(“Quas Velocitates appello Fluxiones, aut simpliciter Veloci-
tates vel Celeritates”). With the development of this method
we have at hand an instrument for tracing changing phenomena
by the relation or ratio of elements. This is an invention
of inexpressible value to Mechanics.! The method appears
to have been first used by Newton as early as 1666 and is
found in his MS. ‘“De Analysi per Equationes Numero
Terminorum Infinitas,” which was given to his students in
1669.

Sir Isaac Newton is to be credited then with a general
clarification and formulation of the investigations of all his
predecessors, and these specific contributions:

1. The concept of mass.
2. The generalization of the idea of force.

1Prof. John Perry’s “Calculus for Engineers” exemplifies the practical
value of the Calculus of Newton.
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. The laws of motion.

. The theory of central forces.

. The theory of attraction.

. The system of dynamics based on the conception
Fit=M.opy.

. The method of fluxions or the fluxional calculus.

. The law of universal gravitation, and the application
of his abstract dynamics to planetary motions.

Before Newton the science consisted of the more apparent
rules of statics as developed by Archimedes and Stevinus
and the uncorrelated principles of dynamics as worked out by
Galileo and Huygens. Newton reduced these cumbersome
unconnected rules of statics and dynamics to three formal laws
of motion and founded a system of dynamics of universal
application which has been found all-sufficient to co-ordinate
the mechanical phenomena of the universe.

In conclusion we may say that the principles formulated by
Newton cover all statical and dynamical problems. Much of
the work of later masters has been a verification and an exten-
sion of the work begun by him. The scienc of mechanics, as
now generally taught, is founded upon them.

Playfair says! in his dissertation on Newton, ““No one ever
left knowledge in a state so different from that in which he
found it. Men were instructed not only in new truths, butin
new methods of discovering truth; they were made acquainted
with the great principle which connects together the most
distant regions of space as well as the most remote periods of
duration and which was to lead to future discoveries, far beyond
what the wisest or most sanguine could anticipate.”

O Hh W
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3. THE CONTRIBUTIONS OF VARIGNON, LEIBNITZ, THE
BERrNoULLIS, EULER AND D’ALEMBERT.

PIERRE VARIGNON (1654-1722).

In the same year that Newton published his Principia (1687),
there was presented before the Paris Academy a work on
Statics by Pierre Varignon based on the principle of moments
which he developed geometrically from the parallelogram of
forces.

The book was published after his death under the title,
“Project d’'une Nouvelle Mecanique’” with the dedication,
“Illustrissimo clarrissimoque viro D. D. Isaaco Newton.” It
begins, “La Mecanique en general est la Science du Mouve-
ment, de la cause de ses effects; en un mot de toutcequiy a
rapport. Par consequent elle est aussi la science de proprietez
et des usuages de Machines ou Instruments propres a faciliter
le mouvement;” 1. e., “Mechanics is in general the science of
motion, of its cause and of its effects; in a word of all that
pertains to motion. Consequently it is also the science of
machines.” We meet here in Varignon’s book a system of
mechanics which is essentially dynamical, including statics
as the special case where forces counterbalance.

After defining mechanics thus, as the science of motion and
the theory of machines, he says this treatise will be divided
into ten sections:

(1) Axioms, postulates and propositions;

(2) Weights suspended or supported by strings;

(3) Pulleys;

(4) Wheel and axle;

(5) The lever;
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(6) The inclined plane;

(7) The screw;

(8) The wedge;

(9) The general principle of the simple machines;

(10) The equilibrium of fluids.

The first section treats of the definitions, axioms and hy-
potheses upon which the work is based. The idea that forces
may act each upon other and maintain a body at rest is
emphasized. Then the suppositions are made that in the
geometrical treatment of machines the parts are to be con-
sidered as without weight and friction, perfectly mobile upon
their axes, cords are to be considered as perfectly flexible
without weight, without elasticity and without stretch or
elongation.

The principle of the parallelogram of velocities is now stated
geometrically as,

Lemma I.

In order to help the mind to conceive compounded motions
let us conceive the point 4 without weight to move toward B
along the line AB, and at the same time suppose that the
line itself moves uniformly towards CD along AC remaining
always parallel to itself, that is to say maintaining always
the same angle with AC. Of these two movements com-
mencing at the same time let the velocity of the first and of
the second be as the sides AB and AC of the parallelogram
ABCD. Then in the parallelogram, I say that by the action
of the two forces upon A, this point will travel along the di-
agonal AD of the parallelogram during the time that 4B and
AC are being traversed.

Lemma I1I.

If the point 4 without weight is pushed in the same time
and uniformly by two forces E and F acting upon it, along
the lines AC and AB acting at the angle CAB. The united
action of these two forces will move 4 along the diagonal
of the parallelogram 4D in the same time that 4 would move
to C or to B and as though a force in the proportion of AD to
CA or AB had acted upon it.
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The parallelogram of velocities and of forces is here con-
ceived as axiomatic. On these conceptions Varignon builds
up a logical geometrical development of mechanics. He dem-
onstrates the principle of statical moments by a geometrical
theorem in which he shows that the product of a force F
(represented graphically by a line), times its lever arm, a

o x'/ ~ a
QA& b N

F16. 17. F1G. 18.
(Diagram from “Nouvelle Mecanique."’)

(another line), the product of which is a certain area, is equal
to the complementary moment also represented by an equal
area in the diagram. For example, in the diagram, Fig. 12,
from the Nouvelle Mecanique we have then F X a + F/ X ¢
= R X b or the moment of the diagonal of a parallelogram of
forces is equal to the sum of the moments of the other two
sides. The point O may be chosen either without the paral-
lelogram within it or on one of the sides. Varignon demon-
strates all three cases by proving that the areas are equal by
geometry. '

If the point O be taken within the parallelogram and the
perpendiculars be then drawn we have F X a — F' X ¢ =
R X b. Finally if O be taken on the diagonal the moment of
the diagonal is zero and we have Fa = F’c. In every case the
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proof consists in a geometrical proof of equality of areas, the
area being the representation of the product of a line, the lever
arm, by another line representing the force. The principle
thus proven is often called Varignon’s principle. It is hardly
credible that this principle of moments was not established
until 1687, but such appears to be the fact. The proof of

F1cG. 19. Fi1G. 20.

this principle was quite within the reach of Archimedes, but
was not established until nearly twenty centuries after his
time.

As an inevitable corollary of Varignon’s proof of the prin-
ciple of moments we arrive at the mechanical rule that in all
cases of the parallelogram of forces and in all cases of statical
equilibrium of forces in a plane the algebraic sum of the
moments of the forces must be zero.

Having established the principle of moments, Varignon then
applies it to many examples of equilibrium in rigid bodies and
in machines. He used it for the solution of all problems of all
the simple machines and founded a whole system of statics
on this idea of balanced moments.

For the exposition of the simple machines it is perhaps easier
for the student to grasp than the principle of virtual velocities
which was established earlier.
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Varignon in his Mecanique refers all cases of equilibrium
back to his proof of moments as a criterion and presents
therefore a harmonious theory of mechanics. His exposition
is essentially geometrical and graphical, and is based upon
Stevinus’ triangle of forces the proof of which Varignon states
as axiomatic in Lemma II of his book. His method of pre-
sentation and his proofs are a great advance over those of
Archimedes and Stevinus.

Many of the modern text-book methods in statics are
copied directly from this Mecanique and used verbatim to
this day in class-rooms. The method of the parallelogram
of velocities and of forces and the method of moments as
applied in the simple machines are in daily use among engineers.

Algebra and geometry deal with fixed quantities, but with
the development of dynamics, mathematics was called upon
to investigate and express quantities whose value is continually
changing. In the latter half of the seventeenth century, this
need was met by the invention of that branch of mathematics,
called the calculus. As has been noted Newton invented one
method of studying the relative changes in dependent quanti-
ties by considering the ratio of change of their elements, which
method of studying ‘‘flowing quantities’”’ he called fluxions.

At about the same time Leibnitz, feeling the need of some such
method, developed his system of studying change by infinitely
small differences or by the ‘““method of infinitesimals.” The fun-
damental idea and the purpose of the two systems is much the
same. Each calculus consists of two branches: (1) differential
calculus which comprises methods of deducing the relations
between infinitely small differences of quantities from the
relations of the quantities themselves; (2) the integral calculus
which treats of the inverse process of determining the relations
of the quantities themselves when the relations of their in-
finitely small differences is known.

Newton’s theory of flux or flow was better suited to Me-
chanics than Leibnitz’s concept of instantaneous changes but
the latter’s notation was found more serviceable and has
generally displaced Newton’s symbols. It was perhaps a
hundred years before this method was generally accepted,

6
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recognized and developed. When we consider that all nature
varies continually, the importance of this mathematical method
of treating variables is obvious. With this instrument once
mastered by the investigators, advance in Mechanics became
rapid.

The transactions of the learned societies of this period are
filled with discussions as to the integrity of the calculus
methods, and with numerous isolated memoirs on its utility in
one problem or another in mechanics. Among the earliest and
most noteworthy of these is perhaps that on page 22, ‘‘Memoirs
de I’Academie des Sciences de Paris, 1700,” in which Varignon
clearly presents for the first time, the differential equations of
motion:

dx dv
a =" a=h
d*x dv
a =5 vg =t

These equations express completely the circumstances of
rectilinear motion for every condition of acceleration or retar-
dation. Newton had stated these laws geometrically (Principia,
Lib. I, sect. 7; Lib. II, sect. 1) but Varignon seems to have
been the first to advocate their expression in the notation of
the calculus. He aspired to free Dynamics from the encum-
brance of purely geometrical proofs by using this lately invented
method of the calculus, and showed how acceleration might
be expressed by the calculus, thus helping to clear the way for
an analytical mechanics.

Like his predecessors he was greatly interested in hydro-
statics and hydraulics and is to be credited with the earliest
clear proof of the important principle that the velgcity of
efflux of a liquid is equal to v/2gh.

Starting with the relation between force and the momentum
Ft = my and denoting the area of the orifice by a, the head of
liquid by &, specific gravity by S, acceleration due to gravity
by g, the velocity of efflux by v, and by T a small interval of
time we have,
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ahs.T = 2L5 .,
g
gh = v’

In the formula ahS represents the pressure acting during
the time T on the mass of liquid avT'S/g. But since v is a
final velocity we get more exactly,

agTS

ahS.T =

or
¥ =12gh or, v= \/2gh.

Varignon® contributions may be summed up then as:
1. Proof of the principle of moments.
2. A complete system of statics based on moments.

de

dt
: . . dy

3. The differential equations - u=%

=y,

@’x _
ldg = ¢

4. The equation for velocity of efflux in hydraulics, v* = 2gh.
That these are masterly contributions to the science of
mechanics is self-evident.
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LEeiBNI1TZ, THE BERNOULLIS AND EULER.

Two hundred years ago the facilities for the spread of
scientific progress and invention were meagre, and in general
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unless the studies of the philosophers developed something
that bore directly upon some immediate practical problem of
the time, no general notice was taken of their work. However
after the principles of Statics and Dynamics which the re-
searches of Stevinus, Galileo, Huygens, Newton and Varignon
had developed, came to be understood among scholars, the
custom of sending out challenge problems arose.

These competitions developed many small points which in
the aggregate amounted to a very considerable contribution.
Slowly a universal method of mechanical reasoning and nota-
tion came into use, which was understood in Florence and Paris
as well as in Berlin, London and St. Petersburg. It consisted
in the reduction of questions concerning force and motion to
problems in pure geometry and calculus.

This method which began with the crude picture diagrams
of Stevinus grew into the formal abstract geometrical me-
chanics of Newton's ‘‘Principia’ and by the genius of Varignon
and others was then expressed analytically. Once the analyt-
ical method was developed it became the custom for the
Philosophical Societies of Paris, London, Berlin and St. Peters-
burg to offer prizes for solutions to various problems in me-
chanics, and there resulted a period of great activity in the
application and extension of the fundamental contributions of
Stevinus, Galileo, Huygens, Varignon and Newton.

Thus the calculus of Newton and Leibnitz came to be applied
in a great variety of problems in mechanics, and ultimately,
this method displaced entirely the geometrical method. Dur-
ing this period both methods were often used. Numerous
mechanical problems were proven by both methods separately
and much was achieved in a disjointed unconnected way.

Most active among those who took part in this development
were Gottfried Wilhelm von Leibnitz (1646-1716), Leonhard
Euler (1707-1783), and the Bernoullis—James (1654—1705),
John (1667-1748) and Daniel (1700-1782).

Leibnitz, through his papers in the ‘‘Acta Eruditorum,”
which he founded, familiarized continental writers with his
powerful method of analysis. Though Newton probably de-
veloped the calculus earlier by the method of fluxions, he had
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presented his Principia on the geometrical method and the
English for a long time followed the geometrical method. It
was not till 1817 that the differential calculus was introduced
into the curriculum at Cambridge and came into general use
in England. On the continent however, the method of Leib-
nitz came into use almost immediately and generally. Leib-
nitz and James Bernoulli, his brother John, the latter’s sons
Nicolas and Daniel, and their friend Euler were most active
in this work of applying the Leibnitzian analysis to various
problems in mechanics.

This was a period of development during which there was
often acrimonious controversy. Two men sometimes arrived
at similar or very similar results by different routes and then
entered into a wordy conflict over their methods, both of
which often proved to be correct. But great and lasting good
came of all these discussions for they served to clear up and
define the fundamental concepts of the science and develop
methods and forms of proof which later masters correlated
into formal treatises. _

Leibnitz does not appear to have had a perfectly clear con-
ception of mass. He speaks of a body as ‘‘corpus” and of a
load or weight as “moles” and only once does ‘“massa’’ occur.
He makes the distinction however between ‘‘vis mortua’’ (pres-
sure) and ‘‘vis viva’’ (moving force). His ideas of the measure
of force also were not clear. He noticed that in machines in
equilibrium the loads are inversely proportional to the veloci-
ties of displacement, so he measured the force by the product
of the body (‘“‘corpus” or ‘“moles’’), into velocity. So far he
was in accord with the notion of Newton and Descartes who
regarded momentum as the measure of force, but Leibnitz
held that such measure of force is only accidental and that the
true measure of force is determined by the method of Galileo
and Huygens, viz: by the mass times the velocity squared.

In 1686 in the ‘‘Acta Eruditorum,’” Leibnitz attacked Des-
cartes’ conception under the title ‘“A short Demonstration of
a Remarkable Error of Descartes and Others concerning the
Natural Law by which they think the Creator always preserves
the same Quantity of Motion; by which however, the science
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of mechanics is totally perverted.” This dispute continued
to agitate philosophers, until the constancy of Zmy and Zmy?
was realized. Certainly Leibnitz was not perfectly clear upon
this. His discussion, however, helped toward a solution of
the difficulty.

James Bernoulli, a friend and admirer of Leibnitz, applied
the calculus to various problems in mechanics with marked
success. He was the first to work out a formula for the
isochronous curve and for the catenary curve.?

Galileo had assumed that a uniform flexible string supported
at its two extremities and acted upon by gravity would hang
in a parabolic curve. James Bernoulli successfully applied
analysis to this problem of the ‘‘chainette’” as he called it,
and to derive the formula for the catenary curve. Having
solved it himself he proposed it as a challenge problem in 1691.
The four mathematicians who solved it successfully were Leib-
nitz, Huygens and James and John Bernouilli. Their solu-
tions appear in the Acta Eruditorum for 1691, pages 273282,
and also in the Philosophical Transactions of the Royal Society
at London, 1697.

From the physical point of view it is easily seen that equi-
librium exists when all the links of the chain have sunk as
low as possible, so that no link can sink lower without raising
part of the chain of equal mass higher, in consequence of the
connections. This state of equilibrium exists when the center
of gravity has sunk as low as it can sink. The mathematical
problem then resolves itself into the problem of determining
the curve that has the lowest center of gravity for a given
length between 4 and B. The equation of such a curve
Bernoulli determined with the aid of the calculus.

James Bernoulli also extended the method of analysis to the
study of the curve of an elastic rod with a weight fixed at the
end. This he put forth under the title of ‘“Elastica.” He also
discussed the problem of the flexible sheet or impervious sail
filled with a liquid which he presented under the titles ‘‘line-
taria” and ‘‘volaria,” and investigated the theory of cycloidal
lines and various spiral and logarithmic curves. His writings

*Opera,” Tom. I, p. 449.
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include an edition of Algebraic Geometry and the “Ars Con-
jectandi,” in which he established the fundamental notions
of the calculus of probabilities.

Johann Bernoulli, brother of James, was the most prominent
and successful professor of mathematics of his time, holding
the chair at Basel and Groningen. His lectures contain the
earliest use of the term “integral”’ and show the first effort to
construct an integral calculus as a set of.general rules or a
body of mathematics. Before this, investigators had treated
each problem of integration by itself. He made himself a
master of the calculus and applied it with marked success to
many problems.

He was the author of the famous challenge problem of the
“brachistochrone’’ which he propounded, 1697.

In abbreviated form it is as follows:

“‘Acutissimis qui toto orbe florent Mathematicis”
Johannes Bernoulli, Math. P. P.
“Problema Mechanico-Geometricum de linea celerrimi de-
scensus ’
“Determinare lineam curvam data duo puncta, in diversis
ab horizonte distantiis, et non in eadem recta verticali posita,
connectentem, super qua mobile, propria gravitate decurrens
et a superiori puncto moveri incipiens, citissime descendat ad
punctum inferius

eecse . e0ssccceccccssscece L T LY PP Y Y Y Y

Groningz ipsis Cal. Jan. 1697."”
Which may be freely translated:
A Challenge to the Keenest Mathematicians of the World,
From John Bernoulli, Prof. of Mathematics.
A Mechanico-Geometrical Problem of the Curve of Swiftest
Descent.

Find the curve of quickest descent between any two given
points at different distances from a horizontal line and not in
the same vertical straight line.

Groningen, January 1, 1697.
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The correct solutions were given by Leibnitz (Acta Erudit.,
1697, p. 203), by Newton (Phil. Trans., 1697, No. 224, p. 389),
by L’Hopital (Acta Erudit., 1697, p. 217) and John Bernoulli
(Acta Erudit., 1697, p. 207)

Bernoulli’s methods are the methods of the present time as
the following quotations from his ‘‘Lectiones Mathematice,
38, 39, 40, Opera, Tom. II1,” will show:

A flexible string fixed at any two points 4 and B is acted
upon by gravity. If we suppose the mass of the string to vary
according to any assigned law as we pass from one point to
another, to find the equation of the catenary of rest. Con-
versely the curve being known, to determine the law of mass
of the string.

Let the axis of y extend vertically upwards, and the axis of
x be horizontal, the plane xOy coinciding with the plane which
contains the catenary. Then since,

x=0 y=—g,

we have, by previous equations, section I,

d ( dx
% (5) = @
d (. dy
ds (‘ds) = mg. ®
Integrating the equation (a) we get
dx
ta = C.

Where C is a constant quantity.
Let T denote the tension at the lowest point, then evidently
T = C, and therefore

dx
t‘—i—s =T. (©
From (b) and (c), we have
Til& = mg.

dsdx
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And therefore,
T‘Q = f d
e | ™eds, @)

but at the lowest point of the catenary dy/dx = 0 and there-
fore, supposing @ to be the value of S, at the lowest point,

dx—gf'mds (e)

If m be given in terms of the variable x, y, s the form of the
catenary may be determined from (d).
Again, differentiating (d) we obtain

'y

dxz’

ds
8ax

m =

a formula by which m may be computed for every point of
the string when the form of the catenary is given. Also from
(c) we get
ds
t=T & . 6))

which gives the tension at any point of the catenary when its
form is known.

Another example is that on page 497, Tom. III, Lectiones
Mathematice; Opera.

A flexible string AOB fixed at two points 4 and B is acted
upon by gravity, the mass at any P varies inversely as the
square root of the length OP measured from the lowest point
O; to find the equation of the catenary.

Let the origin of co-ordinates be taken at O, x being hori-
zontal, and y vertical, and the plane of xy coinciding with the
plane of the catenary, also let O be the origin of S.

Then, if x be the mass at end of a length C from the lowest

point,
ct
m =- “_:S:} ’
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and therefore 1, d, « being in the present case zero, we have
dy _ f‘i‘_ 4
de-g“c*"S;_Zch‘s’

hence putting for sake of brevity

2gudt _ 1
T ~ g’
we get
dy _ (S\'d» _S
dx_(;)dx’_ﬁ'
ddy’ _ds dy*\}
Bimae =3z =\ 1 za)
d dy
Boxans
i— ’
(:+%

integrating with respect to x we obtain,
ay*\#*
23(1 +d—x-) =x+4+ C;

but x =o, dy/dx = o simultaneously; hence C =eB and
therefore

H
26(1 +Z—£) = x + 26; (@)
squaring and transposing
d 2
02 = (2 +28) - 48,

2Bdy = {(x + 2B)* — 46*}4dx;

integrating we have
C+2By=% (x +2B)(x? +4Bx)t —26 log {x + 28 + (x* + 4Bx)}}.

But x = o, y = 0, simultaneously; hence
C = 2p* log (28),
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hence, eliminating C,

x2 ]
28y = } (x + 28)(* + 4Bx)} — 26* log™ L2805 2(3 48 ’
which is the required equation of the catenary.
Cor. From (a) we get

ii_s_.. x4+ 28
dx 28 °
and therefore, by (1, f) .
ds T
t=T_ =2—ﬁ-(x + 26),

which gives the tension at any point of the curve.

On page 502, of Tom. III, Opera, we find the interesting
problem:

To find the law of variation of the mass of a catenary acted
upon by gravity so that it may hang in the form of a semi-
circle with its diameter horizontal.

The notation remains the same as in the preceding problem,
and the equation of the catenary is

x* = 2ay — 5,
where a denotes the radius of the semi-circle; hence
@ =« = (a —y),
y=a— (a®— 2}

dy «x dy a? .
dx (@ -t dx* (a* — a2’
also
ds? dy? a? ds a
="t T e & @ -

and therefore by (1, €)
&y
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or the mass at any point varies inversely as the square of the
depth below the horizontal diameter of the circle. Cor. By
(1, f) we have for tension at any point

ds Ta Ta

t=Td_x=(a’—x’)*—a—y’

These proofs show great facility in handling the calculus
but they are an extension of known ideas rather than a new
contribution. Nevertheless the methods of Johann Bernoulli
exerted a great influence upon the development of the science
in extending the mathematical or analytical method of treat-
ment.

As to his new contributions, he set forth the principle of
virtual velocities in a letter to Varignon, introduced the symbol
g, and assisted him in arriving at the formula * = 2gh, which
had been previously stated,

2 :Ug’i thy c b

This Bernoulli was a profound scholar and wrote on a great
variety of topics as will be seen from the following selection
of titles from his Opera Omnia published at Lausanne in 1742.

I. Dissertatio de Effervescentia and Fermenta-
tione.
II. Novum Theorema pro Doctrina Conicarum.
III. Inventio curve geometrice que spirali 2qua-
tione.
IV. Solutio Problematis Funicularii.
V. Curva sui evolutione se ipsas describentes.
XVIII. Dissertatio physico anatomica de motu mus-
culorum.
LIII. Disputatio medico physica de nutritione.
XC. De motu pendulorum et projectilium.
XCIX. Demonstratio principii Hydraulici de veloci-
tate per foramen et vase erumpentis.
CXL. Meditationes de Chordis vibrantibus.
XXIV. Cycloidis evoluta ipsa est cyclois.
XXXIII. Varia Problemata Physico-Mechanica.
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The most interesting of these is the first part of the third
volume, |'‘Discours sur les Loix de la communication du mouve-
ment, contenant la solution de la premiere Question proposée
par Messieurs de 'académie Royale des Sciences pour l'annee
1724."”

As a preface to it Bernoulli says: ‘““The author of this dis-
course has the honor to present it to the Academy. It was
composed on the occasion of the first of the questions pro-
pounded by the Society to the savants of Europe. Messrs.
Huygens, Mariotte, Wren, Wallis and various other mathe-
maticians have written worthily on this subject and given
us rules for impulse. But not satisfied with taking a general
rule for the most simple cases, by a kind of induction, the
author has followed a method different from theirs and more
natural.

“He goes back to the sources and taking up all that is
known of the subject, it is on principles of mechanics that
he deduces like corollaries particular rules for each case. Up
to this time we have had only a confused idea of the force of
bodies in motion to which M. Liebnitz has given the name
vis viva. The author has not only attempted to bring the
discussion down to date and to explain the difficulty between
Leibnitz and those of the opposite party, he has attempted to
prove by demonstrations direct and entirely new, a truth which
M. Leibnitz never proved except indirectly.

““He proposes to show that the vis viva of a body is not
proportional to its simple velocity as commonly believed but
to the square of the velocity and he hopes to prove what he
shall say, so that no one shall any longer doubt the truth of this
proposition: moreover, he proposes to determine that which
results from the shock of a body which encounters two or
several others following different directions, a problem so diffi-
cult that no one has yet solved it. And indeed, how could
any one, since its solution presupposes an exact comprehension
of the theory of vis viva?

““This theory opens an easy way to several important
truths. It has given the author a solution of the preced-
ing problem which seems somewhat peculiar and a method
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of determining the actual loss of velocity in a resisting
medium and an easy way of finding the center of oscillation
in compound pendulums.” He then goes on to expound the
principle of virtual velocities and the notion of energy as
measured by the mass and the velocity squared.

Talent for mathematics seems to-have run in the Bernoulli
family. Several of the younger generations were famed for
their writings and teaching, among them, the three sons of
John, viz: Nicholas, Daniel and John, Jr., and the two sons of
John, Jr., John, 3rd, and Jacob.

Of these Daniel Bernoulli (1700-1782) was the most promi-
nent. He was professor at St. Petersburg and at Basel, a
famous mathematician, and winner of the French Academy
prize ten times. His chief work in mechanics was on hydro-
dynamics and the solution of the problems of vibrating cords,
in which we find ingenious extensions of known principles of
mechanics by the aid of the calculus.

Euler (1707-1783), the pupil and friend of Johann Bernoulli
and friend of his sons, carried the integral calculus to a high
degree of perfection and invented numerous solutions of me-
chanical problems. His strength lay rather in pure than in
applied mathematics. Euler’s principal contributions are set
forth in his “Methodus inveniendi lineas curvas maximi mini-
mive proprietate gaudentes’’ (1744) in which he presents the
method of co-ordinate analysis and shows the properties of
maximum and minimum of various curves.

He also published at St. Petersburg in 1736 his ‘‘Mechanica
sive Motus Scientia Analytice Exposita” which is sometimes
referred to as the first book of Analytical Mechanics. In
this, he still adheres in part to the old method of geometrical
presentation of mechanics, but his general method is to resolve
all forces in three fixed directions, X, ¥, Z. This makes his
presentations and computations lucid and symmetrical.

As an example, note the method of the following discussion
from page 237, Tom. I of ‘“Mechanica,” on tangential and
normal resolution in curvilinear motion.

A particle is projected with a given velocity in a given
direction, and is acted upon by a constant force in parallel lines,
to determine the path of the particle.
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Let the axis of X be taken so as to pass through the initial
place of the particle, and let the axis of ¥ be taken parallel
‘to the constant force which acts toward the axis of X. Let f
denote the constant force.

Then, the tangential resolved part being — f Z—Z, and the

dx
normal one being f s Ve have for the motion of the particle
dy '

vzs. = f‘E ’ (I)
v dx
Pl (@
Integrating (1)
©® = C — 2fy.

Let V be the initial velocity; then y being zero initially
V* = C; therefore
= V2 — 2fy.

Hence substituting this expression for ¢ in (2)

I vt — oy = %%
= —afy) =5
but
ds?
dx?
14 ﬂ’
dx?
hence

—j—l—’,’(V’ —2fy) = f f(l +dyz),

(V’—zf)dx(1+ ) (+ )dx(V’ —2fy) = o.
Integrating, we have

(I+dx’) V-

Where C is an arbitrary constant.
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Let B be the angle which the direction of projection makes
with the axis of x; then

C(1 + tan?B) = V7,
hence

V(1 +2) = sect 87 = apy),

d
V= Viung - oy sectf,

Vdy = (V* tan® B — 2 fy sec? B)} dx;
whence by integration,
C — V(V*tan? B — 2 fy sec? B)t = fx sec® B.
But x = 0, ¥y = 0 simultaneously; hence

C— V2*tanB = o,
and therefore

V2 tan 8 — V(V? tan?B — 2fy sec? B)t = fx sec? B.
Clearing the equation of radicals and simplifying, we obtain,

fsec*B
213 .

He also solves in a similar manner various problems such as:

“A particle always acted on by a force in parallel lines,
describes a given curve; to determine the nature of the force,
the velocity and the direction of projection being given.”

And, “A particle describes a given curve about a center of
force; to determine the motion of the particle and the law
of force.”

As has been stated the name Moment of Inertia of a body
was given by Euler to the sum of all the products result-
ing from the multiplication of each element of the mass by
the square of the distance from the axis. In his ‘““Theoria
Motus Corporum Solidorum,” page 167, Euler says: ‘‘Ratio
hujus denominationis ex similitudine motus progressivi est
desumpta: quemadmodum enim in motu progressivo, si a vi

y = tanf.x —
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secundum suam directionem sollicitante acceleretur, est in-
crementum celeritatis ut vis sollicitans divisa per massam seu
inertiam; ita in motu gyratorio, quoniam loco ipsius vis sollici-
tantis ejus momentum considerari oportet, eam expressionem
f r’dM qua loco inertize in calculum ingreditur, momentum
inertie appelemus, ut incrementum celeritatis angularis simili
modo proportionale fiat momento vis sollicitattis diviso per
momentum inertiz.”’”! This very useful expression used so com-
monly by engineers was developed by Euler for various plane
figures and for solids of revolution. His method for finding the
moment of inertia for the sphere, right cone, cylinder and
other figures is given on page 198 and the following pages of
“Theoria Motus Corporum Solidorum,” as follows:

To find the radius of gyration of a homogeneous sphere about
a diameter. Let x, x + dx be the distances of the circular
faces of a thin circular slice of a sphere at right angles to the
diameter, from the center and let y be the radius of the section;
then p denoting the density of the sphere, the moment of
inertia of this slice about the diameter will be equal to

$mpytdx,

and therefore the moment of inertia of the whole sphere, a
being its radius, will be equal to

+a a
3xp y'dx = }xp j: (a® — x%)%dx = 5 xpa®.

As the mass of the sphere is $xpa® the radius of gyration
k= §a.

Similarly on page 203 the radius of gyration of a hollow

1Translation.—The scheme of this notation is derived by analogy with
rectilinear motion; for as in rectilinear motion if it be increased by a dis-
turbing force in its own direction the increase of velocity (acceleration) is
equal to the disturbing force divided by the mass or inertia, thus in rotary
motion, since in place of the disturbing force itself we must consider its
moment we call that expression f r?dM which comes into calculation in
place of inertia—the moment of “inertia—so that the increase of angular
velocity in a similar way is made proportional to the moment of the
disturbing force, divided by the moment of inertia.

7
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sphere with external and internal diameters a, b, is proven to be

._2 a® — b° .
k 5a®—b
Euler systematized and perfected the mathematical knowl-
edge of the time. Among his publications are,

Introductio in analysin infinctorum.......... 1748
Institutiones Calculi differential.............. 1755
Institutiones Calculi Integral................ 1768

also a development of the Calculus of Variations.

He set forth the principle of least action,—though Mau-
pertuis is usually given the credit of having originated the
notion,—expressing it in that curious blending of theology
and science common in this period, in this fashion: the all-
wise Maker would not make anything in which some maximal
and minimal property is not shown.

The original Latin form is “Quum enim universi fabrica sit
perfectissima, ataque a creatore sapientissimo absoluta, nihil
omnino is mundo contingit in quo non maximi minimive ratio
quzpiam eluceat; quam ob rem dubium prorsus est nullum,
quin omnes mundi effectus ex causis finalibus ope methodi
maximorum et minimorum, zque feliciter determinari queeant,
atque ex ipsis causis efficientibus,” or ‘For since the fabric of
the universe is most perfect and finished by a most wise crea-
tor, nothing occurs in the world in which some plan of maxima
and minima does not show forth; therefore there is no doubt at
all (/) but that all phenomena of the world are equally well to
be determined from final causes by the method of maxima
and minima and from the same effecting causes.”

This idea was taken up by Euler (Proc. Berlin Acad., 1751)
and developed into a theory of equilibrium of utility by the
application of the method of maxima and minima. If in any
system we cause infinitely small displacements we produce a
sum of virtual moments

PP+PIP’+P" II+...

which only reduces to zero in the case of equilibrium. The
sum is the work corresponding to the displacements, or since
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for minute displacements it is itself infinitely small, the cor-
responding element of work. If the displacements are con-
tinuously increased till a finite displacement results, their
summation is a finite amount of work.

Therefore if we start with any initial configuration of the
system and pass to any given final configuration, a certain
amount of work will have to be done. This work done when
a final configuration or a configuration of equilibrium or equi-
librium is reached is a maximum or a minimum. That is if
any system is carried through the configuration of equilibrium
the work done is previously and subsequently less or greater
than at the configuration of equilibrium itself. For equilib-
rium, therefore

Ppl + Plpl + Pllpll + cee = Q.

From this Euler deduced the principle that the element of
work or the differential of work is equal to zero in equilibrium;
and if the differential of a function can be put equal to zero,
the function has generally a maximum or minimum value.

M

FQ. 21.

This highly ingenious method of determining the equilibrium
of a system was later developed by others. In 1749 Courtiv-
ron, in a paper before the Paris Academy gave it the form:
“For the configuration of stable or unstable equilibrium at
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which work done is a maximum or a minimum, the vis viva
of the system in motion, is also a maximum or minimum in its
transit through these configurations.” .
Euler also assisted in the development of the so-called prin-
ciple of vis viva. He showed that if a body M is attracted
to a fixed center C according to a certain law the increase in
vis viva in the case of rectilinear approach is calculable from
the initial and terminal distances 7, ;.. But the increase is
the same if M passes at all from the position 7, to 7; inde-
pendently of the form of the path MN. The elements of the
work doneare to becalculated from the projections on the radius
of the actual displacements and are thus ultimately the same.
Euler is also to be credited with the first general use of =
for 3.1416 + and the application of his methods of analysis
to hydrodynamics.
We may sum up his contributions then as follows:
1. A perfect systematizing of the calculus.
2. The foundations of analytical mechanics.
3. The analytical method of resolving tangential and
normal components of curvilinear forces.
4. The development of moment of inertia.
5. The principle of least action or maxima and minima
in equilibrium.
6. The principle that the increase of vis viva is inde-
pendent of the path.

Much of the work of D’Alembert and Lagrange is based
on the contributions or methods of Euler, and perhaps would
not have been possible without Euler’s work.
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JEAN-LE-ROND D’ALEMBERT (1717-1783).

As a result of the labors of a host of contributors much had
now been evolved in mechanics in a disjointed way and from
diverse points of view. The prize and challenge problems
were usually very special and did not tend to develop a
formal presentation of the science. It was now in order for
some one to verify, consolidate and formulate all these con-
tributions.

This D’Alembert did in his “Traite de Dynamique” (1743.)
While his work rests upon the work of all his predecessors,
and while he is particularly indebted to Euler, yet his Treatise
possesses distinctly original features. He shows that all
problems in dynamics may be regarded as problems in statics
and he applies in their solution one single unifying principle
known by his name as D’Alembert’s principle. It is to the
effect that in any system of bodies the impressed forces are
equivalent to the effective force.

This formal presentation of mechamcs in a treatise is a
memorable event. It typifies the coming of age of the science.
Henceforth it has a character and unity which it did not pre-
viously possess. This is due to the fact that now there is one
general guiding principle, D’Alembert’s Principle, to which
all problems in mechamcs can be referred for solution.
Namely:—

If a material system connected together in any way, and
subject to any constraints, be in motion under the influ-
ence of any forces, each point of the system has at
any instant a certain acceleration. If now to each point
an acceleration were imparted equal and opposite to its
actual acceleration, the velocities of all points of the system
would become constant, that is, each particle would move
as if free and unacted on by any force whatever. The applied
accelerations, the external forces, and the constraints and
mutual or internal forces of the system, would equilibrate
one another.

In the “Traite de Dynamique’ this idea of which the
above is a condensed translation is expressed as follows:—
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“Probléme General.”

“‘Soit donne un systeme de corps disposés les uns par rapport
aux autres d’'une maniere quelconque; et supposons qu’on
imprime 3 chacun de ces corps un mouvement particulier,
qu’il ne puisse suivre 3 cause de I'action des autres corps;
trouver le mouvement que chaque corps doit prendre.”

“Solution.”

“Soient A, B, C, etc., les corps qui composent le systeme et
supposons qu’on leur ait imprime les mouvemens a, b, ¢, etc.,
qu'ils soient forcés, A cause de leur action mutuelle, de changer
dans les mouvements @, b, ¢, etc. Il est clair qu'on peut
regarder les mouvemens b, ¢, etc., comme composes des mouve-
mens b, B; ¢, v; etc.; d’ou il s’ensuit que le mouvement des
corps A, B, C, etc.; entr’ eux auroit ete le méme, si au lieu de
leur donner les impulsions a, b, ¢, etc., on leur eut donné
a-la-fois les doubles impulsions ¢, «; b,8; C, v, etc. Or parla
supposition, les corps 4, B, C, etc., out pris d’eux-memes
les mouvemens a, b, ¢, etc., donc les mouvemens «, 8, v, etc.,
doivent etre tels qu'ils ne derangent rien dans les mouvemens
a, b, ¢, etc., C’est a-dire que, si les corps n’avoient recu que les
mouvemens, «, B, vy, etc.,, ces mouvemens auroient dfi se
detruire mutuellement et le systéme demeurer en repos.

“De la resulte le principe suivant, pour trouver le mouve-
ment de plusieurs corps qui agissent les uns sur les autres.
De Composez les mouvemens g, b, ¢, etc., imprimés 3 chaque
corps, chacun en deux autres, @, a; b, 8; ¢, v; etc.; qui soient
tels, que si 'on n’efit imprimé aux corps que les mouvemens,
a, b, ¢, etc., ils eussent pu conserver ces mouvemens sans se
nuire reciproquement; et que si on ne leur efit imprimé que
les mouvemens «, B, v, etc., le systeme fut demeuré en repos;
il est clair que g, b, ¢, etc., seront les mouvemens que ces corps
prendront en vertu de leur action. Ce qu'il falloit trouver.”

The idea was not entirely new. James Bernoulli in a
memoir published in Acta Eruditorum, 1686, p. 356, ‘‘Nar-
ratio Controversie inter Dn. Hugenuim et Abbatem Catela-
num agitatee de Centro oscillationis,” set forth the idea of
reducing the determination of the motions of material systems
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to the solution of statical problems. It is a direct conse-
quence of Newton's laws rather than a new principle. How-
ever, to D’Alembert belongs the credit of clearly setting forth
this idea and of founding a formal mechanics upon it.

In algebraic language the principle is: If the co-ordinates
of any particle m of a material system be x, y, 2 and the ex-
ternal forces there applied be X, ¥, Z the system of forces

d*x d?z
™am Yx—"h%. Zl_mld_t”

d? d’x?
Xz—ms’d—;. Yz—ma“:—:i’, Zz—"hd—tp

X, -

etc., acting at the points x, y, 2 and x3, s, %, etc., will be in
equilibrium in virtue of the constraints and mutual reactions
of the system.

The force whose components are

¢x _ Py &
" T M T
is called the force of inertia of the mass m. D’Alembert’s
principle states that. The applied forces and the forces of
inertia in any system are in equilibrium.

If in any problem the work be 0, the particular case of the
principle of virtual displacement results. This principle
follows therefore as a special case of D’Alembert’s principle.

The equation of vis viva also follows from D’Alembert’s prin-
ciple. The integral of the equations of motion can usually be
obtained from D’Alembert’s principle, i

{(x e )ax+(Y m%2 )6y+(Z mes )3z}—o

Here ox, 8y, 62 are arbitrary displacements consistent with
the conditions of the problem. When the equations of con-
dition do not contain the time explicitly, dx (the actual move-
ment along the axis of x during an infinitely short time) is
always a value which can be assigned to §x. In most problems
dx is a possible value of éx and the same holds for dy and dz
similarly. Therefore if this be admitted as a legitimate sub-
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stitution as is usually the case, if we write dx, dy, ds for éx, 3y,
83, D’Alembert’s equation becomes

zm(d”‘dx+ dy+dt,dz) $(Xdx + Ydy + Zds).

Integrating we have
m {(%)’+(%’ )’+(:—f)’} =23 f (Xdx + Ydy + Zds)+C.

This is the equation of vis viva.
If the vis viva at any particular ¢ is Zmv* we have

Zmet — Zmv* = 23 [(Xdx + Ydy + Zds).

If there be no forces acting on the system its vis viva remains
constant. The equations of vis viva are among the most
important in dynamics. They are the foundation of the
theory of energy.

By means of D’Alembert’s principle the equation of motion
of a rigid body can be written at once. We have only to
write the six equations of equilibrium, taking into account
applied forces and the forces of inertia and we have at once

d’x d*y d’s
Zm,=2X, Zm_;=ZY, Img;=2Z,

| Em(y% —z%) = Z(yZ - 2Y),

d’s
Em(z——- —xs = 3(zX — x2Z),

Zm(xd ydt’) =Z(x¥Y — yX).

These equations express the moments about the axes.

The comprehensive character and broad application of
D’Alembert’s principle are apparent; other principles follow
from it as corollaries. It supplies a routine-form of solution
for problems, in a masterly fashion, with great economy of
thought.
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In his study of equilibrium and motion in fluids, and in the
theory of vibrating strings D’Alembert encountered a partial
differential equation of the forms,

Pu _Fu
o at
which he finally solved in 1747. The solution is given in a
paper before the Berlin Academy as follows:
If %be denoted by p, and %1—: by ¢, then du=pdx+pdt. But
g _ %
&  ox

by the given equation, therefore pdt+gdx is also an exact
differential, denote it by dv.
Therefore
dv = pdt+gdx.
Hence

du+dv=(pdx+gdt)+ (pdt+ gdx) = (p+¢) (dx+ds)
du—dv=(pdx+gdt) — (pdi+gdx) = (p— q) (dx—d¥).

Thus % + v must be a function of x 4+ ¢ and # — v must be a
function of x — . We may therefore put

utv=2¢4(x+1%),

u—v=2y(x—1).

and

Hence
u=¢(x+1t) +y(x—1)

in which ¢ and ¢ are arbitrary functions.

In 1749 D’Alembert published the first analytical solution
of the precession of the Equinoxes and of the rotation of the
earth’s axis. He also published a work entitled ‘‘Reflexions
sur la Cause Generale des Vents,” 1744, and three volumes on
the ‘‘Systeme du Monde” in which his calculations and theories
in astronomy are set forth.

One of D’Alembert’s chief claims to distinction, in addition
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to his special contributions, is that he put Newton's results
into the form of the Calculus and made possible their study
and extension. He presented in his ‘“Traité de Dynamique,”
the first treatise on Analytical Mechanics. When this had
been done the way was prepared for a complete exhaustive
treatment of the entire domain of Mechanics by the An-
alytical method. This was done by Lagrange within five
years of D’Alembert’s death.
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4. THE CONTRIBUTION OF LAGRANGE AND LAPLACE.

Although it is probable that Newton used his method of
fluxions or calculus in arriving at the ideas set forth in the
Principia, still he presented them in geometrical form. Even
so, it was some fifty years before they were accepted and as-
similated. The next big step in advance was to be the full
and complete development of mechanics by the analytical
method based on Newton's laws.

It was necessary first that the calculus and its notation
should be perfected and that its use and value in problems of
mechanics should come to be recognized. The labors of Leib-
nitz, the Bernoullis and Euler brought this to pass. Secondly
it was necessary that.the co-ordinate method should be devel-
oped. This was done by Descartes, Euler and Maclaurin and
D’Alembert. When this had been done it was possible to ex-
press the results of Newton in the language of the calculus and
have them generally received and accepted.
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JoserE Louls LAGRANGE (1736-1813).

Comte Lagrange, one of the greatest masters of pure and
mixed mathematics that ever lived, was born at Turin though
of French extraction. A Senator of France, a Count with
the Grand Cross of the Legion of Honor, professor in the
Artillery School of Turin and in the Polytechnic School of
France, Director of the Berlin Academy under Frederick the
Great, his life is one glorious record of achievement.

His great work the ‘“Mécanique Analytique” is analytical as
opposed to geometrical. There is not a geometric diagram in
it, whereas the Principia is full of them, page on page. Writ-
ten 100 years after Newton's great work, it is a grand com-
prehensive treatise gathering up the scattered methods and
principles of the preceding century, harmonizing them and
setting them forth in concise harmonious algebraic form.
He gives a general method by which every mechanical ques-
tion of solids, liguids or gases may be stated in a single alge-
braic equation. The entire mechanics of any system, even
the solar system, can be summed up in a few equations by this
method. This is a wonderful labor-saving and thought-
saving device.

It was his boast that he had transformed Mechanics, (de-
fined by him as “‘a geometry of four dimensions”) into a branch
of analysis. He exhibited the mechanical principles of his
predecessors as simple results of the calculus, and introduced
the method of regarding a fluid as a material system charac-
terized by free mobility of its molecules. With this the sep-
aration between the mechanics of solids, liquids and gases
disappeared, for the fundamental equations of forces could
now be extended to hydraulics and pneumatics. He formu-
lated a universal science of matter and motion, deduced from
the principle of virtual velocities by the method of generalized
co-ordinates. :

Departing from the method of D’Alembert and Euler, in-
stead of considering the motion of each individual part of a
material system, Lagrange shows how to determine its config-
uration by a number of variables corresponding to the degrees
of freedom of the system. The kinetic and potential energies
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of the system can be expressed in terms of these variables and
the equations of motion obtained by differentiation.

He gave to analytical mechanics a complete logical per-
fection, reducing the science to differential equations and
developing the calculus of variations. The introduction of
the “Mécanique Analytique” (1788) is so simple and direct
a statement of the author’s purpose that it is worthy of literal
quotation.

“There are already several treatises on Mechanics but the
plan of this one is entirely new. I have attempted to reduce
the theory of this science and the art of solving the problems
connected with it to general formulas, whose simple develop-
ment will have all the necessary equations for the solutions
of each problem. I hope that the manner in which I have
tried to accomplish my object will leave nothing to be desired.

“This work will have in addition another advantage: it will
collect and present under the same point of view the different
principles, so far found, to facilitate the solution of mechanical
questions. It will show their connection, their mutual de-
pendence, leaving one to judge of their accuracy and value.”

“No diagram will be found in the work. The method which
I follow requires neither figures nor arguments geometrical or
mechanical, but merely algebraic operations arranged in a
regular and uniform order. Those who are fond of analysis
will anticipate this mechanics with pleasure, and be pleased
that I have set it forth in this way.”

Concerning the fundamental principle of the work, he says
after stating D’Alembert’s principle:

“But there is another manner of treatment more general and
more severe which merits the attention of geometers. M.
Euler gave the first hint of it at the end of his treatise on
isomerism printed at Lausanne, 1744, showing that in the paths
described by central forces, the integral of velocity by the
element of the curve always is a maximum or a minimum.
This property M. Euler had not noticed except in the motion
of isolated bodies.

Since that time I have considered the motion of bodies
acting upon each other in any fashion whatsoever, and there
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has resulted this new general principle that the sum of the
products of the masses by the integral of velocities multiplied
by the elements of the spaces covered is constantly a maximum
or a minimum. Such is the principle to which I give here,
although improperly, the name of “least action,’” and which
I consider not as a metaphysical principle, but as a simple and
general result of the laws of mechanics. One may see in
volume 2, ‘“Memoirs of Jarin,” the use I have made of it for
solving several difficult problems of dynamics.”

This principle combined with that of the conservation of
energy, and developed according to the rules of the calculus of
variations, gives directly all the necessary equations for the
solution of any problem.

He then proceeds to develop his ‘‘general dynamic formula
for the motion of a system of bodies acted upon by any forces
whatsoever,” after the manner briefly indicated here. He says
if the forces acting upon a body do not mutually destroy or
equilibrate themselves as in statics, then the forces produce
accelerations. When these forces act freely and uniformly
they necessarily produce velocities which increase with the
time. One may regard these velocities as measures of the
forces. Let us suppose now that of every accelerating force
we know the velocity that it is capable of impressing upon a
free body during a unit time. We measure accelerating force
by the velocity it produces in a unit time supposing the body
to move uniformly for that time, and we know by the theorems
of Galileo that this space that the body would pass over is
twice the distance that the body moves under a constant
accelerating force, such as gravity; therefore we have as the
velocity by which to measure a constant force twice the
distance that the body passes over in a unit time. We must
choose our units accordingly.

After a careful development of these notions Lagrange says
let us now consider a system of bodies disposed as you will and
acted upon by any accelerating forces you please. Let m be
the mass of any of the bodies regarded as point and let it be
referred to three co-ordinate axes by the co-ordinates x, ¥, 2
at any instant ¢, then dx/dt, dy/dt, dz/dt, will represent the
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velocities in the directions of the axes, if the body is abandoned
to itself and moves uniformly. But if by reason of the action
of accelerating forces the velocities take on)during the instant
t, the increments

dx dy

da,d d

at’ dt

one may regard these increments as new velocities and dividing
them by d¢, one will have a measure of the accelerating forces
that produce them. Taking the element of time d¢, as constant,
the accelerating forces will be proportional to d*/ds, dy*/d?,
dz?/df?, and multiplying these forces by the mass of the body
upon which it acts we have

d*x a*y d’z
m (}t—’_ y m E y m ;l—t; ’

for the forces moving the body during the time d¢.. We may
regard each body m of the system as acted upon by parallel
forces, then the total force will be equal the sum of these parallel
forces. Employing now the sign d, to represent differentials
relative to the time, and representing the variations which
express the virtual velocity by 5, we have

d’ dy d’z
mag  Map ™ Mg
for the momenta of the forces

bz &y Os
iz’ Map Map

and for the sum of the momenta

m

(W“+w”+w“m

Now let P, Q, R, etc., be accelerating forces acting upon the
system and p, g, r their distances, then the differentials ép,
dg, or, etc., represent the variations of the lines p, g,  during
the variations éx, 8y, éz; but these forces P, Q, R, tend to
shorten the lines, therefore their virtual velocities should be
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written — 6p, — g, — o7, and their moments — mP3p,
— mQdp, — mRér and the sum of all these forces will be

— 2(Psp + Qbq + Rér + etc.)m.
Therefore the sum of all the forces acting upon the body will be
= (ﬁa +d7 oy + —Bz)m = — Z(Pép + Qdq = Rér,etc.)m
or
z (d? ox + iR 6y+ —az)m+2(Pap+Q5g+RGr+etc )m =o.

“C’est la formule générale de la Dynamique pour le mouve-
ment d’un systéme quelconque de corps.” This formula does
not differ from the formula given in his Statics says Lagrange,
except in the terms
e By P
mae Map Tap

which express the accelerating forces. In statics where the
acceleration is 0, these terms drop out. Therefore this is a
general formula applying to statics and dynamics and to solids
and fluids. In fact the distinction between statics and dy-
namics and solids and fluids vanishes except for the difference
in substitution in the formulas.

Lagrange then applied this formula to many problems such
as, “Sur le mouvement d’un systems de corps libres regardes
comme des points et animes par de forces d’attraction.” He
was the first to make extensive use of the calculus of variations.
The idea of this is present in Euler’s work in an undeveloped
form, but Lagrange was the first to recognize the supreme
importance of these ideas and to develop the method of varying
arbitrary constants in analysis. He successfully applied this
method to the investigation of periodical and secular inequali-
ties of any system of interacting bodies. These methods gave
beautiful solutions of such intricate problems as the effect of
the disturbance produced in the rotation of the planets by
external action on their equatorial protuberances. He also
determined the first maximum and minimum values for the
slowly varying planetary eccentricities, and contributed
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memoirs on the “Propagation of Sound” on the ‘“Motion of
Fluids,” on the “Calculus of Variations,”” and a ‘‘Treatise
on Functions and Equations.” His notes on the Problem of
the Three Bodies, on Variations of the Element of Planetary
Orbits, on Attractions of Ellipsoids, and on the Moon's Secular
Inequality are noteworthy.

Lagrange verified Newton'’s theory and developed his sug-
gestions much as Newton did those of Galileo. He reduced
the whole theory of mechanics to one fundamental formula,
and drew clearly the line between physics and metaphysics.
After his time we hear no more such fantastic speculations as
were set forth by Descartes and Leibnitz.

Diihring in his “Geschicte der Principien der Mechanik,”
page 305, sums Lagrange’s contribution in these words:

“Die Anwendung eines Fundamentalprincips, welches sich
fiir den Calciil eignet, und die grunsitzliche Durchfiihring
der analytischen Entwicklungen als der Haupt eitfadens fiir
die Verbindung aller Wahrheiten der rationellen Mechanik
zu einem einheitlichen System,—das sind die beiden Hauptei-
genschaften, durch welche sich die Behandlungsart Lagranges
auszeichnet.” I.e., The application of a fundamental principle
adapted to the calculus and the consistent utilization of an-
alysis as his main guide for the combination of all the truths
of rational mechanics into a unified system, these are the two
points which distinguish Lagrange’s method.

LAPLACE, SIMON PIERRE, MARrQuUIs DE (1749-1827).

The genius of Lagrange was at its best in generalization
and abstraction and he brought his mind to practical physical
problems with difficulty. It was not so with his contemporary
Laplace, who was gifted with shrewd practical sagacity in
addition to the wonderful mathematical power which won
for him the title of the “Newton of France.” '

He applied himself especially to the great problems of de-
veloping an analytical exposition of celestial motions and per-
turbations, based upon the law of gravitation, and he spent
his life in tracing the consequences of the law of gravitation
as applied to the solar system.

The solar system does not consist of several bodies, but of
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a crowd of them traveling about the sun, many of them at-
tended by satellites; thus the complication of attractions
is evident. Again the motion of a planet at any time de-
pends not merely upon its relative position with reference
to the sun, but also upon the position of the other planets
and of its own satellites. Added to this is the difficulty that
no planet is where it seems to be, owing to the effects of
atmospheric refraction and of the finite velocity of light. The
magnitude of the task that Laplace set himself is appalling.

Yet he produced in his “Mécanique Celeste” a work in
which the whole theory of planetary motions is investigated,
and which offers a complete solution of the great mechanical
problem presented by the solar system. It was his constant
endeavor to ‘‘bring theory to coincide so closely with observa-
tion that empirical equations should no longer find a place in
astronomical tables.” His work is based on the Principia .of
Newton, which he translates into the language of the calculus,
and carries forward and completes so as to produce a mechan-
ical theory of celestial motions.

The “Mécanique Celeste,” in five volumes, gives a full an-
alytical discussion of the solar system. The first two give
methods for calculating the motions of translation and rotation
of the planets, determining their figures and solving tidal
problems. The third and fourth volumes contain applications
of these formule and astronomical tables. The fifth volume
is historical. The work is a complete treatise on physical
astronomy. The “Exposition du systtme du Monde” is the
““Mécanique Celeste” in popular form without the analysis.
The results only are given and the nebular theory is pro-
pounded.

Laplace’s special contributions to the notation of mechanics
are the Laplace Coefficient and the Potential Function. In
the course of his work of investigating the figure of a rotating
fluid mass, the stability of Saturn’s rings, etc., he came upon
expressions for the attraction of an ellipsoid involving an in-
tegration, which he could not solve. He discovered however
that the attracting force in any direction could be obtained
by the direct process of differentiating a single function. He

8
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was then able to translate the forces of nature into the
language of analysis so that he could consider also by mathe-
matical analysis the phenomena of heat, electricity and
magnetism. :

The function V which was named the Potential Function
by Green and Gauss about 1840 is defined as the sum of the
masses of the molecules of the attracting bodies divided by
their respective distance from the attracting point.

In general terms m being the mass, and r the distance from
the attracting point, we have

V = Limit 27,

or
Am = o,

if p is the density of the body at the point %, ¥, 2 and «, 8, ¥
the co-ordinates of the attracted point

"=fff[(x—a)=+gx—‘lyﬂ‘§z’+<=-"’>l”

the limits of the integration being determined by the form of
the attracting mass. Therefore V is a function of «, B, 7,
that is, it depends on the position of the point, and its several
differentials furnish the components of the attractive force.
As the integrations did not usually give V in finite terms,
Laplace introduced (1785) the partial differential equation

2V BV 8V
da2 0% ' ov?

Since known as Laplace’s equation. Here V2 is called the
operator. This equation forms the basis of all Laplace’s re-
search in attractions and opened up the whole field of potential.
This equation is now used in every branch of physical science.

The quantity V2V may be viewed as the measure of the con-
centration of V. Its value at any point indicates the excess
of the value of ¥ at that point over its mean value in the neigh-
borhood of the point. This potential function laid the foun-
dation of the mathematical development of heat, electricity
and magnetism.

=0 =V’V'
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The form in which Laplace first gave his equation, ‘“Re-
cherches sur I'attraction des Spheroides homogenes” in Divers
Savans, v. 10, 1873, is, in the polar co-ordinate form,

av
di=-wlar 1 ey v

Xz @ da T g =
" where u is substituted for the cos 6.

If two points in space are determined by their polar co-
ordinates 7, 6, w and 7/, ¢, ’, and T be the reciprocal of the
distance between them expressed in these co-ordinates, then

T={r—zr' [ +V1—-p2V1—u"cos (- )]+ "},

where u and u’ represent the cos 6 and cos §'.
If this expression be expanded into a series of the form

(P0+P1r,+Pz',+ ,:, )

where P,, Py, P, are known as Laplace’s coefficients of the orders
0, I, . ., a, these are found to be rational integral func-
tions of u and ', of VI — u? cos w and V1 — u2 cos w and
V1 — u? sin w and V1 — 4" sin w or of the rectangular co-
ordinates of the two points divided by their distances from the
origin. The general coefficient P, is of a dimensions and its
maximum value Laplace shows to be unity so that the above
series will converge if ¢ is greater than r. He proves that T
satisfies the differential equation

ar
d(x — 2 d_p + I + d"(rT)
du I —ul dw’ Tdr
and if for T the expanded form is substituted we obtain the

general differential equation of which Laplace’s coefficients
are particular integrals

=0,

dPa
(1 — u?) ——
m 1 d*Pa
an +I_",- dw,+a(a+l)Pa=o.

Laplace’s theorem of these functions is to the effect that if
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Expressions that satisfy this are called Laplace functions.
Y and Z be two such functions, 7 and ¢’ being whole numbers
and not identical then

2w
ﬁ A Y.Zdpdw = o.

The great value of these functions in physical research de-
pends on the fact that every function of the co-ordinates of a
point on ‘a sphere can be expanded in a series by Laplace’s
functions. They are therefore useful in mechanics in researches
in which spheres figure, as in the problem of the figure of the
earth, the general theory of attraction, and in electricity and
magnetism.

Laplace also published in 1812 his ‘“Theorie analytique des
Probabilities,” an exhaustive treatment of the subject of
probability.

It cannot be said of Laplace that he created a new branch
of science like Galileo or Archimedes, new principles or a
radically new method like Newton, Leibnitz, or Descartes. His
work was one of verification and formulation of known ideas
into grand generalizations. He possessed a genius for tracing
out the remote consequences of the great principles already
developed, and he brought within the range of analysis a great
number of physical truths which it did not appear probable
could ever be brought subject to laws of mechanics. His great
contribution was the invention of the potential function in
analysis, which, as developed by him and later by Green, Gauss
and Lord Kelvin, brought fluid motion, heat, electricity, and
magnetism under the dominion of analytical mechanics.
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5. RECENT CONTRIBUTIONS.
THE CONTRIBUTION OF Louis PoiNsor (1777-1859).

The contribution of Poinsot to the science of mechanics is
one of method rather than of principle. In fact, since the
time of Lagrange and Laplace no radically new principle in the
science of mechanics has been brought forth, with the excep-
tion of the principle of conservation of matter and of energy.

Poinsot’s work is set forth in two volumes: ‘‘Les Elemens
de Statique’’ and ‘““Theorie Nouvelle de 1a Rotation des Corps.”
He follows Newton’s method, and builds the science on force,
mass, and acceleration as fundamental concepts, but in his
exposition the notion of couples, 1. e., pairs of parallel forces
acting on the same body in opposite directions has a prominent
part. This idea of a couple was now new; Poinsot did not
originate it. It follows from the principle of moments as set
forth by Varignon in 1687, but nothing worth mentioning
had been made of the idea till Poinsot based a system of
mechanics on it, in his Elemens de Statique in 1803. Perhaps
no idea in mechanics is so easily comprehended, so useful and
so fruitful in the presentation of equilibrium of rigid bodies.
But it does not express the historical development of the
science. Once mechanics had been developed, it was easy to
formulate a system of mechanics by the idea of the couple,
but as a rational primitive conception, the idea of equilibrium
established in this way does not appeal to the mind.

Poinsot says, in the preface of the ‘“‘Elemens’: ‘“Dans la
solution mathematique des problemes, on doit regarder un
corps en equilibre comme s'il etait en repos; et reciproquement,
si un corps est en repos, on sollicite par des forces quelconques,
on peut lui supposer appliquees telles nouvelles forces qu’on
voudra, qui soient en equilibre d’elles-memes, et I'etat du
corps ne sera point change. On verra bientot de nombreuses
applications de cette remarque.” One may regard a body in
equilibrium as if at rest, and one may regard a body at rest
as being so, because the forces applied to it balance each other.
One may assume various other pairs of forces applied to the
body and it will still remain at rest. This idea has many
useful applications.
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He then develops the idea of a couple and sets forth a
number of theorems on couples from which he evolves the
theory of the simple machines. He says: ‘“Nous reduirons
les machines simples a trois principales que I’on peut considerer
si I'on dans I'ordre suivant en regard 2 la nature de 'obstacle
qui gene le mouvement du corps: le levier le tour et le plan
incline.” The simple machines may be reduced to three prin-
ciples according to the nature of points considered as fixed,
viz: the lever, the screw and the inclined plane.

In the first, the obstacle or impediment is a fixed point; in
the second, it is a straight line; in the third, it is a fixed plane.
From these he develops geometrical theorems on the simple
machines.

In general, Poinsot’s method is distinctly his own develop-
ment of a synthetic mechanics, based on Newton's ideas.
He does not use the calculus, but develops the whole system
by a judicious choice of fixed points and by the action of
couples. He gives a self-contained exposition of the science
which is useful rather as a practical text-book than as a system
for advancing the science. The Theorie Nouvelle de la Rota-
tion des Corps treats of the motion of a rigid body by geometry
and shows that the most general motion of such a body can
be represented at any instant by a rotation about an axis
combined with a motion of translation parallel to the axis,
and that any motion of a body, of which one point is fixed,
may be produced by the rolling of a cone fixed in a body on a
cone fixed in space. This enables one to picture the motion
of a rigid body as clearly as the motion of a point. The
previous treatment of the motion of such a body had been
analytical, and gave no mental picture of the moving body.

Poinsot’s exposition of statics and of rotation by the action
of couples about arbitrarily chosen fixed points, lines, or planes,
is valuable as offering ready practical conceptions of mechan-
ical action for every-day use.. It is just such a system as
one would expect a professor in a technical school to develop
for the use of students who were preparing for professional
work rather than for research. The diagrams demonstrate
the theorems so as to make the proof almost axiomatic and
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intuitive. His theorems are to be found to-day in modern
text-books and are of service to the mechanical and civil
engineer. .

Among his memoirs are contributions on: ‘‘Sur la composi-
tion des moments et des aires.” ‘‘Sur la geometrie de I'equi-
libre et du mouvement des Systemes.” ‘‘Sur la plan invariable
du systeme du monde.” His Mechanics is valuable for its
ready practical methods, rather than for new contributions
to the science. :

THE CONTRiBUTIONS oF SIMEON DENis PoissoN
(1781-1840).

Poisson, the distinguished young contemporary of Laplace
and Lagrange, was their equal in mathematical analysis and
their superior in grasp of physical principles. A large number
of memoirs, on a wide range of scientific subjects, testify to
his ability. In some of these he corrected errors in the work
of Laplace and Lagrange.

Poisson applied himself particularly to mathematical
physics. He explored heat, light, electricity and magnetism
by analysis and originated the method of investigation by
“potential.”” He evolved the correct equation for potential

V2V = — 47p
in place of Lapiace’s equation
VvV = o.

This equation now appears in all branches of mathematical
physics, and, according to some writers, it follows that it
must so appear from the fact that the operator V2 is a scalar
operator. Indeed it may be that this equation represents
analytically some law of nature not yet reduced to words.

Poisson’s work, ‘“Traité de Mécanique” (1853), is an excel-
lent exposition of rational mechanics by the method of the
calculus. It proceeds logically from the definitions of ‘‘corps,”
““masse’’ and ‘force,” and a definition of Mechanics “la science
qui traite de I’equilibrium et du mouvement des corps’’ through
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statics and dynamics, section by section. Though it contains
some variations in mathematical presentation, it contains no
new principle.

His work on the theory of Electricity and Magnetism and
his ‘“Théorie Mathematique de la Chaleur,” 1835, present
methods by which nearly all physical phenomena may be
explained in terms of mathematical mechanics. With this
the science of mechanics approaches its highest development.
From the time of Poisson up to the present, a number of
investigators have worked over the field and developed the
applications of known principles and methods. Among them
must be mentioned:

Fourier, Theorie analytique de la chaleur, 1822.
Gauss, De figura fluidorum in statu squilibrie, 1828.
Poncelet, Cours de mecanique, 1828.
Belanger, Cours de mecanique, 1847.
Mobius, Statik, 1837.
Coriolis, Traite de Mecanique, 1829.
Grausmann, Ausdehnungslehre, 1844.
Hamilton, Lectures on Quaternions, 1853.
* Jacobi, Vorlesungen iiber Dynamik, 1866.
Joule, J. P., Scientific Papers, 1887.

As a result of the earnest labors of these and others, and more
particularly by the patient research of those mentioned below,
the nineteenth century saw the establishment of the great
mechanical principle of conservation, the most unifying and
fruitful of all scientific dogmas. It is the result of the accu-
mulated experience of many inquirers rather than the achieve-
ment of any individual.

THE LAw OF CONSERVATION.

In 1775, the French Academy declined to consider any
further devices for obtaining ‘‘perpetual motion,” but it was
not till one hundred years later, about 1875, that the generali-
zations known as the Conservation of Matter and the Con-
servation of Energy, or the Law of Conservation came to be
generally admitted after long experiment and careful study.
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The principle of the Conservation of Matter was established
about 1780 by Lavoisier, (1743-94), as a result of a series of
experiments with the chemist’s balance which indicated that
the mass of a given quantity of matter remains constant
regardless of change of state or of chemical combination.

The principle of conservation of energy was of slow growth.
The idea of conservation in nature seems to have been dimly
felt as far back as the time of Descartes (1596-1650). New-
ton, also, seems to have had an idea of it, though his de-
velopment of mechanics by the concepts of work, force and
distance, blinded him to the appreciation of the measure of
activity by energy. Still in the scholium to his third law, we
read: “If the action of an agent be measured by the product of
the force into its velocity, and if similarly the reaction of the
resistance be measured by the velocities of its several parts
multiplied into their several forces, whether they arise from
friction, cohesion, weight or acceleration, action and reaction
in all combination of machines will be equal and opposite.”
Itis probable that the popularity of the Newtonian exposition
of mechanics from the point of view of force and work, had a
tendency to delay the establishment of this principle of con-
servation. The concept of Energy was foreign to Newton’s
mechanics.

The principle was rather a slow development of the Huy-
genian idea of energy and it came to the fore, with the recog-
nition of a relation between mechanical energy and heat. The
idea that heat is a form of energy for which there is an exact
mechanical equivalent was first suggested about 1798, by the
experiments of Count Rumford on the heat resulting from
the boring of cannon and by the experiments the following
year, of Sir Humphrey Davy on melting ice by friction. This
conception was at variance with the generally held hypothesis
that heat was of the nature of a material fluid.

The idea languished till 1842, when Julius Robert Mayer
began experimental research on the subject. Choosing as the
unit of heat, the quantity necessary to raise one gram of water
at 0° C., one degree centigrade, commonly called a ‘‘calorie,”
and for the unit of work, one gram lifted one meter or a
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‘“gram-meter,” the determination of the number of gram-
meters that are equivalent to a calorie in energy was stated
by Mayer as 365 from his experiments on the heat evolved in
compressing air.

In 1843 J. P. Joule (1818-89) undertook the investigation of
the subject and invented a variety of apparatus for determin-
ing the dynamical equivalent of heat and among other forms
the common laboratory method of descending weights turning
paddle wheels in a vessel of water, the temperature of which
is determined by thermometers. The subject now came up
for thorough investigation and discussion by scientists. Helm-
holtz maintained the principle in ‘‘Ueber die Erhaltung der
Kraft,” 1847, and Rankine, Kelvin, Clausius and Maxwell
contributed either experimentally or theoretically to its estab-
lishment.

It is worded in various ways, one form being: In any system
of bodies the energy remains constant during any reaction or
transformation between its part. It is also stated as: “The
energy of the universe is constant.”

In 1850 Joule obtained his value 423.5 gram-meters for the
dynamical equivalent of heat which for two decades was the
accepted value. By 1860 research had verified this figure by
transformations of energy through mechanical, electric, mag-
netic and chemical transformations in sufficient number to
warrant the acceptance of the principle of conservation of
energy. Prof. Rowland in 1879 made a series of very careful
determinations of the dynamical equivalent of heat using
Joule’s stirring or paddle apparatus, and finally gave the value
425.9 for water at 10° C.

This principle is, as Maxwell says, ‘‘the one generalized
statement which is found to be consistent with fact, not in
one physical science only but in a¢/. When once apprehended,
it furnishes to the physical inquirer a principle on which he
may hang every known law relating to physical actions, and
by which he may be put in the way to discover the relations
of such actions in new branches of science.” He states the
principle as follows: “The energy of a system is a quantity
which can neither be increased nor diminished by any action



THE MODERN PERIOD. 123

between the parts of the system, though it may be transformed
into any of the forms of which energy is susceptible.”” The
total energy of a closed system is invariable quantity.

Whether the energy of a system is partially in the kinetic
and partially in the potential form, whether the energy exists
as potential energy of arrangement of the gross parts of a
system, or as molecular energy, or electrical energy, or as
kinetic energy of moving masses, or of moving molecules, or
of vibrations of the ether or of electrical currents, the total
quantity of energy in an isolated system is constant.

We have no acquaintance with “absolute energy” or of
energy apart from matter. Our knowledge is limited to energy
changes in matter. Work done upon a body or a system
increases its energy, or work done by it upon another body
confers energy upon it. If we do work upon a body weighing
100 lbs. so as to raise it vertically 5 ft. we store 500 ft. Ibs. of
energy in it, which is said to be in the “potential’”’ form. The
mathematical expression of energy always requires two factors.
For instance, in doing mechanical work we may measure the
energy by the product of the force times the distance, F XS,
or if the work has produced kinetic energy we measure it by
the mass of the body multiplied by the square of the velocity,
1. e., mv?/2. In case the mechanical work is transformed into
heat the factors become the specific heat and the rise in tem-
perature. If the heating is produced by a transformation of
electrical energy, the electrical energy is measured by the
quantity of electricity and the electromotive force.

From the principle of conservation have been evolved the
three principles of thermodynamics or of energetics which are
commonly listed as:

(1) the conservation of energy;

(2) the distribution of energy or the principle of Carnot;

(3) the law of least action.

The second principle is given by Clausius in the form:
““Heat cannot of itself pass from a colder body to a warmer
one.” Lord Kelvin put it thus: “It is impossible, by means
of inanimate material agencies to derive mechanical effect
from any portion of matter by cooling it below the tem-
perature of the coldest surrounding objects.”
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This was later generalized and put into the form: The trans-
fer of energy can only be effected by a fall in tension. This
is the principle of Carnot and signifies that energy always
goes from the point where the tension is high to the point
where it is low. This applies not only to heat but to all
known forms of energy.

If we imagine a system of bodies taken at random in various

conditions of temperature, electrification, etc., they will not
remain as thrown together, but a readjustment, with trans-
ferences and transformations of energy will begin, until one
of the factors of the energy of all the bodies has the same
value or intensity in all parts of the system.
. That is, if the electromotive force or the temperature is
the same in all parts of the system, no transference takes
place; or, if for the kinetic energy, the velocity is the same,
there is no change; but whenever there is a difference there
will follow a change within the system. The third principle
of thermodynamics says that these changes always follow a
path which requires the least effort. This is sometimes named
Hamilton's principle. With these theories of readjustment
and flux of energy the occasion and character of the various
changes or phenomena of the material world may be
schematized.

It is worthy to note that no one has succeeded in exactly
and completely reversing a series of natural processes. There
is always a loss of energy usually as heat, in any series of
transferences or transformations of energy. The researches
of Clausius and Planck seem to prove that there is a constant
‘‘/degradation” of energy or a reduction to the condition of a
dead level. Without tension or difference in potential there
is no transmission of energy, nor can there be any work done.

Having attained then, the mechanical conception of energy
and the principles of conservation, we come into possession of
a unified theory and a workable scheme of antecedents and
sequences of the gross phenomena of nature, which now become
asubject of calculation by mathematical analysis as formulated
in Analytical and Celestial Mechanics.

Granted a certain quantity of energy in a material system,
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the conditions of its transfer and transformation are now be-
come a matter of mathematical calculation, and the concomi-
tant gross phenomena may be predicted with certainty and
precision. The great principle of conservation of energy is a
wider generalization than the Newtonian mechanics. It has
enabled us to advance our explanation of the motion-phenom-
ena of the universe, but we are still far from explaining all
phenomena by Mechanics. The result of recent efforts to ex-
tend the science so as to explain the minuter and more subtle
phenomena of the universe will now be briefly commented

upon.

6. THE ETHER. ENERGY. DISSOCIATION OF MATTER.

The nineteenth century saw the general acceptance of
Lavoisier’s adage, ‘“Nothing is created, nothing is lost.” With
the gradual establishment of the idea of conservation came an
enthusiastic endeavor to unite the various separate sciences
into Science by means of the concept of energy. Energy being
conceived as a measure of activity and the quantity of energy
being considered invariable, it is logical to expect that all the
phenomena of the universe might be co-ordinated by this idea.

Mechanics which had developed the concept of energy and
a series of mathematical equations expressing its relations,
from a study of the gross motion phenomena of the world,
had arrived at what appeared to be a universal law. And
now the various separate chains of phenomena which had
been linked together by the chemist, the physicist, the botanist
and the biologist were to be welded into one Science by the
principles of mechanics. The chemists had been working
toward the idea of conservation for nearly a century and
when chemistry and mechanics came into accord upon the
idea of conservation, it was felt that it must fit the other
sciences too, and that it was the key to nature’s secrets.

A review of the scientific beliefs of twenty-five years ago
reveals a faith in the duality of natural phenomena. They
were conceived as the result of the action of indestructible
energy through indestructible matter which was conceived as
floating in an all pervading medium called the ether of space.
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This medium was conceived as penetrating and pervading all
matter.

The idea of an ether of space appears to be very old. The
term is derived from the Greek word =ther, meaning the
brilliant upper air. The hypothesis in later times was the
result of the logic that demanded a medium to transmit light
and heat through interplanetary space and through a vacuum.
Hence it was at first called the light-bearing or luminiferous
ether.

Fresnel (1788-1827), the French physicist, in his undulatory
theory of light first gave this hypothesis definition. Later
Faraday (1791-1867) likewise postulated a medium in connec-
tion with his researches in electricity and magnetism and
suggested that perhaps one and the same medium would serve
for both light and electricity. The researches and calculations
of numerous investigators among whom Maxwell was promi-
nent finally gave decision in favor of one medium or ether,
possessing certain characteristics.

Being a purely arbitrary hypothesis the ether could and
soon came to be endowed with such properties as were called
for by the logic of the situation, and these properties were
altered from time to time as seemed necessary. The ether
was declared to possess imertia, because time was required
for the propagation of light through it. It was conceived as
having density and elasticity by analogy with matter, and it
was pictured as an ‘“‘elastic jelly.” In this medium, waves
varying in length from miles to less than two millionths of a
millimeter were conceived as explaining various phenomena of
light, heat, electricity and magnetism. Though nothing is
positively known of the existence or structure of the ether,
this convenient assumption has been developed with great
definiteness.

Once this hypothesis was established Mechanics entered
upon a new phase of development. It was called upon to
deal with molecular and atomic energy and invited to explain
by its principles the minute phenomena of light, electricity and
biology. In this it relied upon the unifying power of the law
of conservation and the license to warp and model the sup-
posititious ether to the exigencies of the occasion.
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How far this has been successful can be but briefly considered
here. It soon became apparent that the molecule or smallest
portion of physical matter, sometimes pictured as bearing to
a drop of water the ratio that a golf ball bears to the earth,
must give up its simplicity as a dense hard sphere and become
constituted of at least several atoms of various densities to
comply with the chemist’s notions of elementary and com-
pound substances.

Before long, these atoms had assumed the complexity of
solar systems and were conceived as composed of thousands
of particles or electrons in rapid motion, and as being of many
varieties. Here we see at work the familiar old primitive no-
tions of division, moving particles and pictorial representation.
In the hands of such investigators as Fizeau, Crookes, Kelvin,
Lodge, Le Bon, Michelson, Morley, Rayleigh, Ramsey, Roent-
gen, J. J. Thomson, Rutherford and others, the method has
been applied in linking up, by the principles of gross mechanics
a variety of minute phenomena. It has led experimental re-
search through numerous novel and remarkable investigations
in light, heat and electricity from which much is expected.

With the discovery of the X-Rays by Roentgen in 1895, and
of radioactivity by Becquerel and the Curies in 1898, and with
the discovery by J. J. Thomson that the passage of these
activities through the air makes it a conductor of electricity,
new conceptions arise. The air as we commonly know it, is
a non-conductor of electricity but “ionized’” air produced by
radioactivity, or by the emanations from such substances as
radium, thorium, and polonium, is a conductor. It soon be-
came evident that a great many bodies in nature are spon-
taneously active and are constantly giving out emanations.

Investigation showed that these emanations have the power
of dissociating a gas, or of breaking it up into particles, com-
parable with hydrogen atoms, and particles approximately one
thousandth as large, called electrons. The velocity of these
particles approximates that of light and their total-mass or
inertia appears to be due to an electric charge in motion. In
other words the one characteristic invariable property of mat-
ter, viz: mass, is explained as an electric charge in motion.
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Larmor, in his “Ether and Matter,”” says the atom of matter is
composed of electrons and of nothing else. This conception
builds matter of electricity in motion, though it is a question as
to whether this is a simplification or a complication of theory.

The question as to where these electrons get their motion,
or what is the origin of the energy which expels these emana-
tions with such terrific velocity, has been met by a mechanical
hypothesis of the atoms as whirling “solar systems” of thou-
sands of electron-satellites, some of which, when equilibrium is
disturbed, fly off tangentially with great velocities. This is
practically saying that molecules and atoms of matter on their
disruption or dissociation set free energy. Experiments on
radioactivity show that a gram of radium will raise the tem-
_perature of 100 grams of water 1° C. an hour without per-
ceptible loss of weight on the chemist’s balance. But the re-
searches of Prof. Crookes and Dr. Heydweiller,! estimate the
duration of a gram of radium at about 100 years after which
there is no longer any radium, therefore a quantity of highly
heated water may be left as a result of its emanations if we
conceive it to act upon water. ‘Here matter disappears and
energy in the form of steam pressure appears in exact ratio.

This brings us face to face with a contradiction of the law
of conservation as we have stated it. We have matter fading
into the ghost of matter losing its one distinguishing unalter-
able characteristic, namely, mass, and liberating an enormous
quantity of energy in the process. From a mechanical point
of view this is a contradiction in terms but the advance guard
on the skirmish line of science necessarily uses the terms that
are at hand with various mental reservations and modifications
until nomenclature can be revised and remodeled. With every
advance in Science there is inevitably a period of temporary
anarchy in theory and terminology. The concepts of energy
and electricity appear to be about to go through some such
period of transformation as has happened with the term force.

We find ourselves now on the threshold of the realization
of the dream of the alchemist. These X-rays, emanations,

1P, 237.
3Phys. Zeitschrift, October 15, 1903.
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ions, electrons and electricity appear to be phases of the
dematerialization of matter, stages in the breaking down of
matter into intra-atomic energy. As Professor de Heen of
Liege says, “it seems we find ourselves confronted by condi-
tions which remove themselves from matter by successive
stages of cathode and X-ray emissions and approach the sub-
stance designated as the ether.”

Further researches indicate that electricity is one of the
forms of energy that result from the breaking up of atoms,
that it is composed of these imponderable electrons, the ghostly
emanations of fading matter which themselves have been pic-
tured as but minute whirlsin the all pervasive ether. We come
here to a new conception, matter is conceived as built up of
electrons, pictured as little whirl-pools in a fundamental ether
of which the universe is composed. However this may be, we
are made acquainted with stores of energy and activities as
little known as electricity was before Volta's day. The estab-
lishment of the fact of the dissociation of matter opens up
unsuspected and inconceivable sources of energy. The energy
liberated from the partial dissociation of a tub of water would
probably equal that of all the anthracite coal fields of America.

This theory hints at an explanation of some of the mysterious
activities of vegetable and animal life. The researches of bio-
logical chemistry are just beginning to reveal some of the
secrets of the flux and reflux of intra-atomic energy in highly
complicated and unstable compounds and the incidental liber-
ation of (electrical) energy. The theory also offers suggestions
as to the character of allotropy, catalytic action, diastases,
toxins and protoplasmic action. These minute phenomena of
nature are motion-phenomena ‘and as such come within the
purview of mechanics, but in the development of a theory of
the grosser phenomena they have had scant attention. It
may be that the laws of gross mechanics do not apply here
exactly, at any rate it seems that there is enough suspicion of
mutation of matter and flow of energy to put the law of con-
servation on the defensive.

The most radical contradiction of the now commonly ac-
cepted doctrine of conservation is that given by Dr. Gustave

9
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Le Bon in his “Evolution of Matter,” 1905, from which the
following summary is taken.

‘1. Matter, hitherto deemed indestructible, vanishes slowly
by the continuous dissociation of its component atoms.

“2. The products of the dematerialization of matter con-
stitute substances placed by their properties between ponder-
able bodies and the unponderable ether—that is to say between
two worlds hitherto considered as widely separate.

‘3. Matter, formerly regarded as inert and only able to
give back the energy originally applied to it, is on the other
hand, a colossal reservoir of energy—of intra-atomic energy
—which it can expend without borrowing anything from
without.

‘“4. It is from the intra-atomic energy, manifested during
the dissociation of matter that most of the forces in the uni-
verse are derived, notably electricity and solar heat.

“s. Force and matter are two different forms of one and
the same thing. Matter represents a stable form of intra-
atomic energy; heat, light, electricity, etc., represent unstable
forms of it.

“6. By the dissociation of atoms,—that is to say, by the
dematerialization of matter, the stable form of energy termed
matter is simply changed into those unstable forms known by
the names electricity, light, heat, etc.

‘7. The law of evolution applicable to living beings is also
applicable to simple bodies; chemical species are no more in-
variable than are living species.”

These are bold generalizations made from comparatively
scanty experimental data on very minute and delicate phe-
nomena, and they are not unchallenged. But they suggest
a new departure and a new phase of development in mechanics
and hint at marvels until now undreamt of.

As to the possibility of producing energy for industrial
purposes by breaking down or using up matter and thus turn-
ing it into energy, the expectation is certainly as bright as
was the prospect, that Volta’s early electrical experiments
with frogs’ legs and a copper wire would ever lead to the
operation of heavy railroad trains by electricity or to the
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transmission of the voice from city to city, by wire, or of
‘“‘wireless messages’’ from mid-ocean to shore.

The wonders of aerial telegraphy and telephony are the
result of careful investigation and study in this new field of
what might be called the mechanics of the ether. When the
“‘activities in the ether” are more thoroughly understood we
may expect greater wonders. It is to be noted that it is not
always the most intense action that will produce a desired
result. A thunder clap will not move a tuning fork to vibra-
tion, whereas the vibration of a violin string will do so if of
the proper key. ' A spark is ridicuously inadequate as com-
pared with the explosion of energy it may cause. The simple
striking of a phosphorus-match by moving it with a velocity
of about ten feet a second, serves to set up disturbances
which have a velocity of 186,000 miles a second.

Atomic energy, of the existence of which there seems to be
no doubt, is practically inexhaustible in amount, as simple
calculations show. The energy that would flow from the dis-
sociation of a one cent copper coin is equal to the energy of
1,000 tons of coal applied in the production of steam. Me-
chanics has brought us from the dim gropings of the Stone
Age, for ““more power to the arm,” to an outlook upon an
immense universe of ceaseless energy. When mechanical con-
trivance shall have caught up with, and exploited this vision
we may expect a conquest of power that will accomplish incon-
ceivable wonders.

This then is the fruit of fifty centuries of patient endeavor
in mechanics, of 2,000 years of geometrical mechanics and 200
years of analytical mechanics. It is the heritage of the patient
fidelity and stern integrity of the great inquirers and their nu-
merous minor coadjutors, and it presages a greater and more
marvellous harvest of enlightenment and benefaction for the
future. The indomitable courage and patience of these
searchers for ultimate and invariable truth have emancipated
the race from much of the incubus of the superstitious fetish-
ism, and from some of the drudgery of daily life, and they point
prophetically to greater conquests to come. But in the words
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of one of the eminent sages! of the science, all have thus far
been as little children picking pebbles on the shore, while the
great ocean of the unknown glooms beyond. The words of
Laplace are still all too true, ‘‘What we know is little, what we
do not know, immense.”

1Sir Isaac Newton.




PART 1V.
CONCLUSION.

The history of the science of mechanics has now been traced
in outline. We have noted its aspirations; we must now note
its limitations. Science is human experience tested and ar-
ranged in order. It is not its purpose to offer a philosophy
of the universe, nor is it essentially in conflict with religion.
It seeks, rather to co-ordinate experiences into a systematic
theory of relations, of causes and effects. The discovery of
natural truths and the extension of the field of knowledge by
a process of correlation, rejection, revision and verification is
its province.

We note that the science is a mental resumé of the growing
experience of the race, a development founded on many cen-
turies of endeavor in the arts and trades. It had its origin
in the dim past with geometry which evolved from land-
surveying as mechanics did from the trades. The science is
essentially the product of European thought. In the nature
of things its development consisted in abstracting from the
numerous phenomena of nature the constant elements, this
method obviously indicating itself as the path of progress.
Once the abstractions of form and position were realized, study
of forms and positions led to the development of a geometry
of measurement and an arithmetic. Until this point is reached
not much can be expected in physical science, for the spur of
progress is the question ‘“how,” and no satisfactory answer
can be given to it until a system of measurements is developed.

When once the abstract conceptions of form and position
are firmly established and a method of measurements devised,
then the conditions and circumstances of change of position
and of change of form and size present themselves as questions
of possible investigation.

Even after the Greeks had developed geometry, their ideas

. 133



THE SCIENCE OF MECHANICS.

134

€691-6z91 ‘suaBAny
¥891-0291 *3ajjoue|N
16914291 *3jkog
9891-2091 ouRny
Z991-£291 ‘Jeosed
*zh91-b9S1 ‘S8
zb91-b9S1 *0d[11en
0z91-gbS1 ‘SNUIAJIG
Log1-S¥S1 ‘IPleq) opmo
“PUIA
6151-2¥S1 ®ep opJeuod]
006 "J1) TSy uq]
‘av
'l
«Rnnuwn *SaPAWIYIIY
*D'g 00% "I prong
*D°g 00§ *a1) ‘seso3eqifg
*0°g 009 "I1D) ‘Soey L,
'd *(fyoquasty
000Z ‘1) suen)) sowyy
(*K10381y cavpusy, ) uassg
Jo ume() ‘oxadsepy)
i (3uRd
(ouosyaly) | fosunpy 330qqy)
*pord “oqiny

‘9010 fednynuad) -apnsed

‘winiSojoroy ‘esadQ |e jo solweudq wnnpuad 3y) jo m.._ooa L | €491
*Xneq s9p JUSWIANON Np 31e1], *solnespAy Arejuswd[qg | 9991
*BOIUBYIIN-0018AYJ eIUsWwLIadxF *sosed Jo ainssaid pue dawnjoA jo mey | S991
o13edg oadep a3 *K109y3 onewnauyg | €991
‘ea], *A109Y3 o13e380IpAY | 2991
*SOTURYIdW
erqdosonyg eidouurg [[esteamun jo wmashsy -A1jomoa3 orexqaldyy | ¥ror
‘winjnpuad Jo wISTUOIYJ0S]  ‘saIpoq
*039 ‘“1830081(T |Bunrey jo AlodyJ ‘papunoj sotmeu(q | Zbor
*80138IS0IPAY Alejuomrd|yg
‘eonjewoyIe]y eyewduwmodAy |'sonneig omdern -°ssozoj jo 3j3uely IyJ | 8091
*33q1 WNJOJTUBYIIA *JUdWOW [eo3eyg Y[ [ L4ST
‘s3duosnuepy *judmIoOw [eonels Y], | 0oSI
‘gefeqebnpy 1, eM 1qelfy wip ‘ei1qad|y ‘uonerawnu diqery | 006
‘av
‘So1elIg
jo Sumuidaq ay] -Aouedonq jo sydwunyg
*039 ‘sjuesdpuodinby |'A3aea3 Jo 193ul) 19A3] Y3 jo J|dwuny | Szz
PN, *A139w093 [eunio | 0of
s3duosnuepy A130m0a3 pue dRowyILY | 00S
s3dudsnuey *A130w008 Ares pue Suikeaing | 009
“WNISNN
gsuug 9y3 jo snikded sowyy 00§z
«£19330d UO sBuimelp ‘wIo0j
pue no.—:uomﬁ liea umﬂcmuﬁfom 93 YIIM duugliduxo . EllUYd pPut Junoy
-ur Jwd4j3o191y pue uoJIBUN)) |‘etuojAqeq ul padojaAdp sapes} dueyRRy  00SE
*s3urjomp axye| *039 ‘Molre pue moq ‘a3pom
pue 9A®D jO s3IPNIS [eOL30J0RYOIY | ‘I9A3] 3Y3I JO §30UIIAAXA [EOTUBYIIW UOWIWO)) | 00001
RO X : |
‘uopnqLIu0) 38

*SOINVHOINW 40 FONJIIOS FHL 4O INFWJOTIAFA FHL 40 MIIA IvVINGVL



135

CONCLUSION.

81930
pue ‘uogo]

‘a3po ‘saun)

9y} ‘uoswoy J, ‘|2 *13J3C\ Jo uonye
0061 a1 | -19nboag‘ sa)001) ‘suonjeorqnd juamm)) [-100ssiq  °AI09Y3} UOIIF  "AI03Y3 J3Y3H | 0061
‘[PAXEN
‘GIAPY] ‘[[ep
-ul ], ‘zyjoqyuidy ‘A310uy
olg81 ";) ‘o[nof ‘Jokey *s1oded JYIIUADG |pPuUe 93BN JO UOIIBAIISUO)) Y3 JOo Me] 3y | 0Sg1
‘wsnaudew
pue 310113093 ‘J83Y 03 SOTUBRYIIN JO UORIED
obg1-1841 ‘uossiog ‘snowdy (-nidde sy pue [erjuajod jo JuswdojpAap Y], | obgr
*A109y3 uonyejoy °sajdnod uo paseq
6SgI1-LLLY *308uUI0g *€og1 ‘anbnelg op suawdly (son3esg jo A1odyl v °s9jdno) jo Aiodyg | Cogr
*SOIUBYRN [eNSIR) .
Lzg1-6bL1 *aoe(der] *66L1 ‘a383]3)) anbuessy Jenjualod jo 4109y7, | oogr
‘uonjenby so3ue.
€L81-9¢L1 *a8ueide] *ggL1 ‘anbipAreuy anbruedspy |-e]  -sjuswaoedsiqg jennp jo Iydouny | g8l
€gL1-Loll 19y ‘YhL1 ‘snpoylay ‘sisA[euy a3euipio-0)) jo majsAg | ¥hin
*sotueyd
egli-L1l1 *J_quUIY, EAZA - [edndfeuy -oidpuug s aquely,( | €hir
zgL1-00L1 ‘1jnousdg ‘q *( LI *edIWBUAPOIPAH *SOIeuApOoIpA’ obly
6S21-8691 stnyzadne *ZSL1 ‘sa1any JI0M LSL1
gvL1-L991 ‘1jnousag * ‘uouluep 03 13339 *SANII0[AA [ L1l
91L1-St91 *Z31uqIe] ‘WNIONIPIIF BPY ['Poylam snjnoje)) 3yJ], °ABIdug JO 3da0uo)) | 00l
*juauIoul [Bol
-3e3s Jo jooid [edjowoar)  °S3VI0] padue
zzl1-¥So1 ‘uou3uIeA- +£g91 ‘anbrueosy 3[[9ANON |-]eq uo paseq s. Lgor
*SUOIXN[,] 'SOIUBYIIN JO UOIISOa
*s3dLIosNUeA |-X7 [BOLIIDWO03N) ¥ *J9JUID B INOQe UOHOIN
9zli-zv91 ‘UOIMAN "9891 ‘eiduLld |"UOBIIARID) JO MB] UOHOJN JO SM®T YL | 9891
€oL1-9191 ‘stiem "BOIUBYRN "yoedut jo sme | 8991
‘porRd “logny ol pageIqng ‘uoRNqIue) req




136 THE SCIENCE OF MECHANICS.

on natural phenomena are found expressed in such naive state-
ments as those of Aristotle to the effect that all bodies have a
place and seek their place; bodies float because of their form;
if they move, their motion is either natural or violent; heavy
bodies go down because they belong down under the lighter
ones; the heavier they are, the farther down they belong and
the faster they move to get there! It was not till the abstract
concept of force was completely attained to, eighteen hundred
years later, and the concomitant circumstances of it studied
and measured that these ideas gave place to our modern gen-
eralizations.

The measurement of the constant elements in natural phe-
nomena naturally began with bodies near at hand and at
rest, with statics and hydrostatics. We find that the great
contribution of Archimedes is not so much the rules and
methods commonly associated with his name, as the develop-
ment of a science of measurement and its application in the
study of natural phenomena. With this the science of me-
chanics began.

Here at its very basis we find the abstract concept and the
mathematical notion of relativity as fundamental to the
science. Those who ask a physics or mechanics without ab-
stractions and mathematics are seeking science without its
most essential and useful features. The further review of
the science indicates that an evolution of abstract concepts
and a development of the application of analysis in connection
with them is an inevitable necessity of its progress.

It is not the purpose here to consider metaphysical and
psychological questions, therefore we will not speculate upon
the probability or possibility of developing a science of me-
chanics on another basis than the abstract concept linked up
mathematically. That we cannot know matter or the phe-
nomena of nature except as mental percepts or concepts is a
trite saying; it seems to follow logically therefore that our
mechanics must be built up of these elements, however much
experience and study may change and elaborate them.

We have seen how the notion of force developed and
changed. How at first it was probably anthropomorphic, con-
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ceived as the muscular vigor of an invisible demi-god, how it
underwent transformation, served a very useful purpose in
the development of mechanics and is now discarded in some
text-books as an outworn subjective idea to which there is
nothing in nature to correspond. It is so with other ideas,
and perhaps many of them will continue to go through some
such development and transformation. They will be changed,
modified or discarded. Mechanics was developed by geo-
metric methods of measurement up to the year 1700; then,
the method of fluxions and limits made possible the investi-
gation of quantities whose value is continually changing, and
the science made a wonderful advance.

In all mechanical experience there are two conceptions, how-
ever, which are constantly present, and form, as it were, the
background—Time and Space. They appear to be funda-
mental and ultimate; being irreducible, they cannot be com-
pared with anything, and are indefinable. With them a third
conception variously pictured and called, matter, energy, ether
or electron, suffices to form the rational resumé of phenomena
which is called mechanics. The riddle of time and space is a
question of metaphysics, not of mechanics. Considering it
briefly we note there are several points of view. One may
hold after the manner of Trendelenberg in his “Logische Un-
tersuchungen,” Chap. V, that there exists the conception of
motion quite apart from the ideas of space and time, which
he derives from it. His endeavors to prove a knowledge of
motion prior to any idea of position or of sequence are not
convincing. Though the theory is plausible, it is not proven.
A second theory due largely to the philosophy of Kant and
Hume would make time and space merely modes of perception,
ways in which the perceptive faculty distinguishes objects.
Though this is not admitted generally as expressing the full
truth, it indicates clearly the intimate relation between time
and space.

They are bound together in a way which may be pictured
by supposing space to represent the breadth of our field of
perception, then time would represent its length. Space
marks the co-existence of perceptions at a point in time, so
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time marks the progression of perceptions at a position in
space. The two modes combined give us motion as a funda-
mental way in which we conceive phenomena.

If we admit this, the mode of perceiving things in this way
would seem an essential feature of our conscious life. With
only the one space mode of perception, we could know only
of co-existing things, of number, position and measurement;
our science would be limited to arithmetic, algebra and geo-
metry, and the phenomena of motion would not exist for us.
We could not conceive of warmth, weight, hardness, etc., for
these depend upon sequence, on time. On this theory the
perceptive faculty sorts sense impressions by these two modes,
as upon a rack or frame-work; and if the simile be permitted
one may say both co-ordinates are necessary. Neither infinity
of space or of time, or empty time find place on the frame-
work, nor have they meaning in the field of perception.

Space and time in this view are modes of perceiving things.
They are not necessarily, per se, infinitely large or infinitely
divisible, but are essentially relative. The reality of time
and space is not a point of discussion in this paper, but this
philosophical theory is often involved with the philosophy
that denies or is agnostic as to the reality of matter,—re-
garding sense perceptions under the modes of time and space
as the only realitites.

A more rational point of view and one that will appeal to a
greater number is the theory that neither denies the existence
of matter and motion apart from perception nor affirms that
time and space are but modes of thought, and that motion
is the concomitant of their relation to each other. According
to this theory the reality of moving bodies is not denied, but
it recognizes that our knowledge of them is limited to what
we may perceive and conceive of under the modes or limita-
tions of time and space. It recognizes our hypotheses and
principles as approximations, and questions whether we can
ever fully conceive of or comprehend the realities of nature
in all their completeness.

The concepts developed with and within these modes of time
and space, such as geometrical surface, atom, molecule, force,
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etc., are not necessarily the realities. Often they are obviously
notso. But these terms are very useful in picturing the correla-
tion and sequence of phenomena. The continual shifting and
the evolution which we see going on in our scientific concepts
indicate that they are approximations, and points the necessity
for caution in speaking of them as realities, or of projecting
ideal dancing or whirling molecules into the world of the actual.

As to this third conception which, together with time and
space, suffices to illustrate the phenomena of nature, it is
variously conceived and described as matter, as ether, and
as electrons. The first and oldest of these was the idea out
of which the others have arisen as later and broader knowledge
imposed more precise requirements. The older books on
mechanics went along with ‘“corpus” and ‘“‘moles” until the
distinction between weight and mass was made. Then
“masses’’ sufficed until more recent times when matter came
to be commonly defined in the text-book by its properties
of extension and inertia. The modern. view is given in the
little book ‘‘Matter and Motion,” by Clerk Maxwell thus,
(page 163): “All that we know about matter relates to the
series of phenomena in which energy is transferred from one
portion of matter to another till in some part of the series our
bodies are affected, and we become conscious of a sensation.
We are acquainted with matter only as that which may have
energy communicated to it from other matter. Energy, on
the other hand, we know only as that which in all natural
phenomena is continually passing from one portion of matter
to another. Itcannot exist except in connection with matter.”

In effect, this paragraph defines this third thing as a medium
for the storage and communication of energy, without telling
what it is or what energy is. Having arrived at “‘energy’’ as
a convenient conception and being under the necessity of con-
ceiving of it as stored and transmitted, the idea of matter is
made to assist to that end.

In the well known Treatise on Natural Philosophy by Thom-
son and Tait we read (p. 207): “We cannot of course, give
a definition of matter which will satisfy the metaphysician,
but the naturalist may be content to know matter as that
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which can be perceived by the senses or as that which can be
acted upon, or can exert force.” This definition, like the
first, is of a dual character indicating matter as the medium of
the action of force instead of energy. Either of these defini-
tions will serve for a development of mechanics from the view
of energy or of force. With either of these premises granted
a logical mechanics is possible.

If we consult Tait’s “Properties of Matter’” (pp. 12-13 and
pp. 287-91), we read: “We do not know, and are probably
incapable of discovering what matter is,” and, ‘‘The discovery
of the ultimate nature of matter is probably beyond the range
of human intelligence.” This is at least decisive, but some
would probably say it is unnecessarily blunt and discouraging.

The idea of matter, proving inadequate with the advance
of the science, and the application of molecular mechanics
in the study of light, electricity and heat, the theory of the
ether as a perfect fluid medium and a perfect-jelly medium
was introduced. The jelly-theory of the ether has undoubt-
edly been of value in simplifying many of our views of physical
phenomena, but not being entirely satisfactory, the ‘‘vortex
atom’ and ‘‘vortex ring” in the ether were invented. This
was followed by Kelvin's “‘ether-squirt.”” From periodic varia-
tions of the rate of squirting as influenced by the mutual
action of groups of squirts, he was able to picture and deduce
many of the phenomena of chemical action, cohesion, light
and electro-magnetism.

A more recent theory is the corpuscular or electron theory
as expounded by J. J. Thomson in ‘“The Corpuscular Theory
of Matter,” 1907, which supposes that ‘‘the various properties
of matter may be regarded as arising from electrical effects.”
On page 2 of this volume we read: ‘“This theory supposes
that the atom is made up of positive and negative electricity.
A distinctive feature of the theory—the one from which it
derives its name—is the peculiar way in which the negative
electricity occurs both in the atom and free from the atom.”
He supposes that the negative electricity always occurs as
exceedingly fine particles called corpuscles, and that all these
corpuscles, whenever they occur, are always of the same size
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and always ‘‘carry the same quantity of electricity.” “What-
ever may prove to be the constitution of the atom we have
direct experimental proof of the existence of these corpuscles.”
This theory has the advantage of being able to explain elec-
trical metallic conduction. It explains mechanical inertia as
the self induction of an electric current, and mass on the basis
of the velocity of the corpuscles. On this theory matter is
conceived of, as in part at least identical with electricity, and
- the properties of matter are explained as electrical effects.
But this still leaves a third concept, electricity in addition
to time and space. It is interesting to note that in the exposi-
tion of this theory, analysis and the elementary mechanical
concepts of velocity, mass and energy, etc., are used to attain
to this new idea. This illustrates the evolution of new con-
cepts from the old, as the path of advance in mechanics, and
in all science.

Yet even these closer approximations cannot be regarded
as realities. They indicate mechanical actions which may be
close approximations of the reality but there is no ground for
calling them identities.

Dr. Ernst Mach says,! “purely mechanical phenomena do
not exist. They are abstractions made either intentionally or
from necessity for facilitating our comprehension of things.”
Though this is not conclusively established, the mechanical
theory of nature does seem artificial. There is no reason for
believing that an actual mechanism of atoms and molecules
as some scientists present, is at the bottom of nature. In fact,
recent researches in the electron idea tend to indicate that this
is unlikely. But this pictorial mechanical methed developed
by European thought is a highly serviceable and valuable ex-
pedient for generalizing experiences, teaching them, and apply-
ing them. It serves a most useful purpose in investigation.

As J. J. Thomson says in his ‘“Corpuscular Theory of Mat-
ter,”? “From the point of view of the physicist, a theory of
matter is a policy rather than a creed; its object is to connect
or co-ordinate apparently diverse phenomena, and above all to

*“Mechanics,” p. 404.
2Page 1.
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suggest, stimulate and direct experiment.” Mechanics will no
doubt continue to develop in this way in the future as in the
past. As Professor Ziwet says:! “It is now pretty generally
recognized that Newton’s laws of motion including his defini-
tion of force are not unalterable laws of thought but merely
arbitrary postulates, assumed for the purpose of interpreting
natural phenomena in the most simple and adequate manner.

. Itis now coming to be recognized, as researches are made
in the electron theory, that the abandonment or generalization
of the older mechanics must lead to a more general mechanics.
It will probably be non-Newtonian, based on the development of
the electron theory including Newton’s laws as a special case.”
Prof. Pearson says? ‘‘We must hope to ultimately conceptual-
ize an ether, from the simple structure of which several of
the laws of motion postulated for particles of gross matter
may directly flow. . . . The customary definitions of mass
and force, as well as Newton’'s statements of the laws of
motion, abound in metaphysical obscurities. It is also ques-
tionable whether the principles involved in the current state-
ments as to superposition and combination of forces are scien-
tifically correct when applied to atoms and molecules. The
hope for future progress lies in clearer conceptions of the nature
of ether and of the structure of gross matter.”

The history of mechanics in the past indicates that before
each step in advance, there is a period of readjustment and
of assimilation of previous ideas. We appear to be passing
through such a period now. The great generalizations of the
law of gravitation and of the principles of conservation of
matter and of energy have about done their work of readjust-
ment, and have been assimilated to the previous ideas, formmg
a body of doctrine as a basis for further progress.

As indications of where this advance may be expected, one
may look toward the points at which investigators are dis-
satisfied with the science, or are not in accord with each other.
These are in the direction of the ultimate character of this

third concept variously termed matter-energy, ether-squirt,
1Science, Vol. XXIII, p. 50.
#“Grammar of Science,” p. 32I.
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vortex-ring, electron, etc., and in the direction of the law of
gravitation. This principle never has fitted in well with the
other principles of mechanics. It is found unsatisfactory in
that its action seems to be different in kind. Itis a convenient
generalization, but there is no explanation of how the pull of
one body is conducted across space or what conducts it. The
principle of action at a distance is not satisfactory. It was
not satisfactory to Newton. Progress is to be expected in this
direction, and a beginning has already been made with the
Electron Theory. It is possible that a more general law may
be evolved from the study of potential as expressed in the
equation of Poisson.
V2V = — 4=p.

This formula appears to express a mode of conception of
natural phenomena which is almost as ultimate as the time
and space modes. It may be that a law or mode of conception
may be evolved that will include all three modes in one.
But though this is foreshadowed in analysis it is not possible
yet, to state such a law in words. .

As some of the fundamental concepts of formal mechanics,
such as matter and the law of gravitation, are not beyond criti-
cism, later advances will very probably reformulate the science.
It may indeed be necessary partially to tear down the present
system and build it anew on different lines, when the funda-
mentals are more correctly perceived and comprehended. The
science originated with, and developed from a study of gross
bodies with motions of considerable amplitude, and the notions
thus obtained have been refined and applied in picturing the
unseen. The minute operations which produce the large ap-
pearances may in the future be pictured as of a different kind
and order from the gross things. While the endeavors of
the German professors Hertz and Boltzmann in this direction
cannot be called successful, they indicate the tendency. We
should be careful not to let prejudice in favor of present ideas
and methods hamper progress as prejudices have done in the
past.

The curious disintegrating effects of radium and uranium
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and their derivative products, each with a characteristic ‘‘rate
of decay,” tend to weaken the notions of immutability and
conservation, and to reinforce the idea that formal mechanics
at best gives but a hazy picture of the realities of the world.
But it is a model or a picture that can be improved and brought
more in accord with a wider and more varied number of
phenomena. Though imperfect, its value and utility in ap-
plied science and engineering is marvellous. Its economic
value is beyond question, and is indeed the reason of its exist-
ence, and one of the strong incentives to its improvement.

The “conceptual shorthand,” by which the resumé of phe-
nomena is made, will no doubt be improved, but it seems im-
possible that the fundamental concepts of time and space
shall give place. And the third idea which is at present neces-
sary for a formal presentation of the science appears to contain
an ultimate element not resolvable into these other two. The
future may evolve from electricity or energy a more precise
idea of this third fundamental concept and make clearer its
connections.

At present, in spite of the fact that some of the generaliza-
tions recorded under the head of mechanics are widely appli-
cable in the world of phenomena, we cannot claim that the
science comprises a knowledge of the foundations of the world
of phenomena, nor indeed a true picture of any reality of the
world. The most that may be legitimately claimed is that it
gives a tentative mental resumé, as Dr. Mach says, an “as-
pect” of the world of phenomena which is fairly satisfactory
and prodigiously useful and valuable.

Withal we should be on our guard lest our science be too
much with us, late and soon, lest we come to reverence these
apparent constancies of relation and these serviceable fancies
too highly. When in the glories of sunset and rainbow one
sees and thinks of nothing but molecules and refractions, then
truly there is “little we see in nature that is ours.”

The historical review of the development of the Science indi-
cates that it is not essentially in conflict with Philosophy or
Religion. It speculates not why, but asks how, and it is only
the tyro who finds it incompatible with piety.
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While, with some, a mechanical explanation of all nature
is an avowed ideal, the scientist who ponders the world of
phenomena with an open-mind, cannot but be impressed with
a causal activity immanent therein, which is more than blind
chance. The universe is more than a fortuitous concourse of
molecules. The more we study it, the more need we have to
predicate as a cause of the cosmos as a whole, and of its cease-
lessly varying infinity of phenomena, an Immanence of Con-
trol, incomprehensible to our finite mind.



146 THE SCIENCE OF MECHANICS.

A BRIEF BIBLIOGRAPHY OF NOTEWORTHY PUBLICATIONS
ON THE SCIENCE OF MECHANICS.

Archimedes. Oxford manuscript, edition 1792. German translation of
Nizze, 1824. :

Arneth, A. Die Geschichte der reinen Mathematik. Stuttgart, 1852.

Arago, F. J. D. Collected works, Paris, 1857, containing an account of
various mathematicians of the middle ages and modern times.

Bayma. Molecular Mechanics.

Bernoulli, J. Opera Omnia, Acta Eruditorium, 1693.

Bernoulli, D. Hydrodynamica, 1738.

Baden-Powell, Historical View of the Progress of Physical Science.

Ball, J: R. W. The History of Mathematics. «

Bossut, C. Histoire generale des mathematiques, 1810. Cours complet
des mathematique, 7 vols., 1801, etc.

Cantor, M. Vorlesungen iiber die Geschichte der Mathematik. Leipzig.

Cajori, F. A history of Physics.

Clausius. Die mechanische Wirmetheorie, 1876.

Clifford, W. K. Common Sense of the Exact Sciences.

Crookes, Sir Wm. Radiant Matter.

D’Alembert. Traité de Dynamique, 1743.

Delambre, J. B. J. Histoire de I'’Astronomie.

Daniel, A. Principles of Physics.

Draper, J. W. Conflict between Religion and Science.

Diihring. Kritische Geschichte der Mechanik.

Duncan, R. K. The New Knowledge.

Euler. Methodus, Opera, 1744 (Leipzig, 1887).

Fleming, Jas. Electronic Theory, Popular Science Monthly, 1902.

Fournier. The Electron Theory.

Galileo. Discorsi, 16 vols., Alberi, Florence, 1856.

Gibbs, J. W. Statistical Mechanics.

Gow, J. Short History of Greek Mathematics.

Gunther, S. Vermischte Untersuchungen zur Geschichte der mathema-
tischen Wissenschaften. Leipzig, 1876.

Hamilton. Quaternions.

Hankel, H. Zur Geschichte der Mathematik. Leipzig, 1874.

Heller, A. Geschichte der Physik. Stuttgart, 1882.

Helm. Die Lehre von der Energie.

Hertz. Principien der Mechanik.

Huygens. Horologium Oscillatorium; Opera.

Holman. Matter, Energy, Force and Work.

Jerons. Principles of Science.

Joule. Scientific Papers, 2 vols.

Kaestner, A. G. Geschichte der Mathematik.

Kretschmer. Die physische Erdkunde im Mittelalter.

Kimball. The Physical Properties of Gases.

Lami. Elemens de Mecanique, 1687.

Laplace. Mecanique, Celeste, 1799.




BIBLIOGRAPHY. 147

Larmor, Jos. Ether and Matter, 1901.

Lagrange. Mecanique Analytique, 1788.

Lehmann. Molecular Physik (Leipzig, 1889).

Lodge, O. The Ether of Space. Pioneers of Science. On Electrons,
The Electrician, 1903.

Love. Theoretical Mechanics, 1897.

MacLaurin. A Complete System of Fluxions.

Marie, M. Histoire des Sciences Math. et Phys. (Paris, 1888).

Mach, E. The Science of Mechanics, 1893.

Mariotte. Traité du Mouvement des Eaux, 1666.

Maspero. The Dawn of Civilization.

Maxwell, C. Matter and Motion, 1892. Theory of Heat, 1897.

Meyer. The Kinetic Theory of Gases (London, 1899).

Michie, P. Elements of Mechanics.

Minchin, G. M. Treatise on Statics.

Mivart, St. G. The Groundwork of Science.

Murchard, F. W. Litteratur der math. Wissenschaften.

Newton, 1. Principia. :

Nichols, E. F. Physics.

Pascal. Traité, 1662.

Pearson, K. The Grammar of Science.

Planck. Das Princip der Erhaltung der Energie (Leipzig, 1877).

Poggendorff, J. C. Biographisch-Literarisches Handwérterbuch zur
Geschichte der exacten Wissenschaften. Leipzig, 1863.

Poisson, S. D. Traité de Mecanique, 1840.

Poinsot. Elemens de Statique, 1877.

Poncelat. Cours de Mecanique.

Poynting & Thomson. Properties of Matter, 1901.

Quetelet, L. A. J. Histoire des Sciences mathematiques et Physiques chez
les Belges, 1864. Bruxelles.

Risteen. Molecules and Molecular Theory, 1895.

Rosenthal, G. E. Encyclopzdia der Mathematik. Gotha, 1796.

Routh. Rigid Dynamics, 1884. Dynamics of a Particle, 1898.

Rowland, Scientific Papers. Baltimore, 1902.

Stallo, J. B. Modern Physics.

Stevinus, S. Hypomnemata Mathematica, 1608.

Tait, P. C. Recent Advances in Physical Science. Newton’s Laws of
Motion. Thermodynamics. The Properties of Matter, etc.

Thomson, J. J. The Corpuscular Theory of Matter. The Application
of Dynamics to Physics and Chemistry, etc.

Thomson & Tait. Treatise on Natural Philosophy.

Thomson, W., Sir (Kelvin). Lectures and Addresses.

Tylor. Primitive Culture.

Todhunter, I. A History of the Calculus of Variation during Nineteenth
Century.

Varignon. Nouvelle Mecanique, 1687.

Wallis. Mechanica Sive de Motu, 1670.

White, A. D. A History of the Warfare of Science and Theology in Christ-
endom, 2 vols.

Wren, C. Lex Natural de Collisione Corporum, 1669.

Whewell. History of the Inductive Sciences.



Digitized by GOOS[@




Digitized by GOOS[Q



Digitized by GOOS[G




Digitized by GOOS[Q



